
The Uniform-Section Disk Spring 
BY J. 0. ALMEN1 AND A. LASZLO,' DETROIT, MICH. 

The authors point out in this paper that initially coned 
annular-disk springs of uniform cross section may be 
proportioned to give a wide variety of load-deflection 
curves not readily obtainable with the more conventional 
forms of springs, and that, although the versatility of this 
type spring has long been indicated, the formulas avail­
able have not been presented in a manner to disclose 
readily the effect of spring proportions on characteristics. 
Therefore the authors lulve derived the formulas presented 
in this paper with the intention that the formulas will aid 
the designer in arriving at suitable characteristics by 
choice of spring geometry. These new formulas have 
been in use for several years at the General Motors Cor­
poration research laboratories section, and their re­
liability has been checked by tests of springs used in a 
variety of special test equipment. 

I N ADDITION to compactness along the axis of loading, the 
initially coned, annular-disk spring of uniform cross section 
may be proportioned to give a wide variety of load-deflection 

characteristics not readily obtainable with the more conventional 
forms of springs. By the simple expedient of varying the free 
cone height and the working range of deflections, spring rates 
may be varied from positive to zero to negative. The Joe.d­
ee.pa.city and deflection range may be varied by the use of multiple 
springs arranged in series and/or parallel. 

The versatility of the annular-disk spring has long been in­
dicated. However; the formulas heretofore available have not 
hecn presented in e. manner to disclose readily the effect of spring 
proportions on characteristics. Hence the designer could not 
make full use of this type of spring. 

In this pa.per, it has been attempted to present formulas in a 
manner to aid the designer in arriving at suitable characteristics 
by choice of spring geometry. These new formulas have been 
in use for severe.I yea.rs at the General Motors Corporation 
research laboratories Eection, a.nd their reliability has been 
checked by tests of springs used in a variety of special test 
equipment. Experience has covered springs varying in outside 
die.meter from 1 in. to 12 in., springs with ratios of outside to 
inside die.meter from 1.4 to 5.5, and springs with ratios of free 
cone height to thickness giving pre.ctice.lly the full range of 
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characteristics plotted in Fig. 3. The present formulas are 
shown to be reliable for prediction of load-deflection curves. 
Le.ck of information on true stresses does not detract from their 
utility. Computed permissible maximum stresses for static 
Joe.ding are quite high, in the neighborhood of 220,000 lb per 
sq in., but experience indicates that these values may be used 
for design purposes when using pie.in carbon steel. In dynamic 
applications, fatigue tests are required. 

Fig. · 1 shows the type of load-deflection curve given by the 
diaphragm spring found in the ordinary oil can. It will be 
recalled that, as the oil-can bottom is deflected, we must at first 
exert considerable pressure and that, subsequently, the pressure 
required decreases in a.manner similar to that shown in Fig. 1. 
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FIG. 2 AmroLAR-DISK SPIUNG 

We will find occasionally a damaged oil can in which the bottom 
fails to come be.ck. This will happen when the negative-rate 
portion of the load-deflection curve extends into the region of 
negative load as indicated by the broken-line curve. In this 
case, the diaphragm will he stable in the position indicated by 
the letter Bas well as at the point 0 . 

Our present interest is, however, in the annular-disk spring 
of the type shown in Fig. 2. Assuming first that angular de­
flection of the cross section is relatively small, second that the 
cross section remains undistorted in the deflected position, and 
third that loading and support are uniformly distributed around 
the respective circumferences, we obtain the following formulas 
for dished springs. 

The formula for the load is 

p - Ea [(h - a)(h - ~) t + ,,]· 
(1 - er') Ma' 2 

305 
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The maximum stress in the upper edge is 

S - (l -!:)Mas [ Ci ( h- ~) + C,t J 
The maximum stress in the lower edge is 

s - Eo [c1 (h-!)·-cst] (1-.,.s)Mas 2 

where a - outside radius = hall outside diameter, t - thickness, 
h - free height ... height of truncated cone formed by the upper 
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or lower surface, 6 = axial deflection, E .- modulus of elasticity, 
er - Poieson's ratio, M, Ci, Cs - constants given in a function 
of outside-diameter-inside-diameter ratios. The values of these 
constants are given in Fig. 18. 

The derivation of these approximate formulas and the manner 
in which they are used is discussed in detail in Appendixes 1 and 2. 

LoAI>-DEFLECTION CBARACl'ERIBTICS 

Fig. 3 shows load-deflection curves calculated for a series of 
springs having the same diameter and thickness but varying 
in initial cone height h. 

That these theoretical characteristics are obtainable in prac­
tice is shown by Figs. 4 to 7, inclusive, which cover outside 
diameters from 1 in. to 121/, in.; outside-diameter-inside­
diameter ratios from 1.7 to 4.25; and cone height-thickness 
ratios from O to 2.5. The agreement between theory and test 
is noteworthy. 

In calculating the curves shown in Fig. 3, the load was aesumed 
applied in the direction indicated. Another group of curves 
can be obtained from the same springs by applying the load in 
the opposite direction, as shown, for example, in Fig. 8: 

Springs having load-deflection curves of the type h - 0.141 in. 
shown in Fig. 3 and the lower curve in Fig. ··s, are often very 
useful inasmuch as they have a deflection range in which the 
load changes only very slightly, that is, a deflection range of 
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low spring rate. This type curve is obtained when h is of the 
order of t vf2. By making h somewhat greater than t v2, a 
region of slight negative rate is obtained, which increases the 
total deflection range of low spring rate. Where permissible, 
this is a useful expedient. When such low-rate springs are used, 
they permit fairly wide tolerances in the preload deflection 
without alteration of load. As discussed later in this paper, 
the actual load given by the spring may, if necessary, be readily 
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adjusted by alteration in the radial location of the support or 
point of loading. 

An example of a machine design using such low-rate disk 
springs is shown in Fig. 9, wherein a live tailstock center is 
shown equipped with two disk springs in parallel arranged to 
t.ake the thrust load of the bearings. The springs have a de­
flection range or 0.1 in. in which the load is .practically constant, 
thus allowing for work expansion when long pieces are being 
machined without overloading the tailstock bearings. 

Fig. io shows how the load capacity may be varied without 
alterations of any kind to the spring but by variation in the 
point of load application. As a first approximation, the load 
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Flo. 9 TAILBTOCK CENTER WITH D1sx: SPRINGS 

varies inversely as the length or the arm of the couple tending 
t-0 rotate the cross section, and the deflection at the load varies 
directly as the length of the arm of the couple tending to rotate 
t.he croas section. The test curves shown in Fig. 10 show also 
t.he friction hysteresis loop resulting from the slight slip that 
occurs between the loading ring and the $pring, and between 
the spring and the supporting ring, when these members are 
rigid. The width of the loop appears to bear no fixed relation 
to the load, as found aillo in other tests. Disk springs loaded 
in parallel have interspring friction, whereas springs loaded in 
series have friction at the loading and support points only. 
Hence, the amount of friction damping may be varied by a se­
lection of series or parallel combinations. 

Fiit. 11 shows load-deflection curve.~ obtained by stacking 
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several springs in a series-parallel combination. As predicted 
by theory, the deflection range of the single spring is tripled and 
the load capacity is doubled .. 

The· effect of the outside-diameter-inside-diameter ratios on 
the flexibility of disk springs is shown in Fig . . 12. The curve 
in this figure considers an initially flat spring of given diameter 
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stressed to 200,000 lb per sq in. maximum under a 4000-lb load, 
the spring thickness being varied as shown to maintain these 
conditions. It will be seen that the maximum flexibility is 
obtained when the outside diameter is approximately twice the 
inside diameter. These are also approximately the proportions 
for best resiliency or the maximum ratio of energy storage to 
spring weight. The resiliency of uniform-section disk springs 
is somewhat lower than for most other forms of springs due to 
the nonuniform stress distribution. Somewhat better resiliency 
can be obtained from disk springs with radially tapered sections 
as shown by Brecht and WahP but the added resiliency of such 
springs is obtained at the expense of increased cost. As a rough 
approximation, it may be said that the .uniform-section disk 
spring has a resiliency one half that of a coil spring. 

• "The Radially Tapered Disk Spring," by W. A. Brecht and A. 
M. Wahl, Trans. A.S.M.E., vol. 52, part 1, 1930, paper APM-57-4, 
pp. 45-55. 

TANGENTIAL STRESSES IN .ANNln.AR-DISK 8PBING8 

True stresses in the annular-disk spring are unknown. How­
ever, a background of experience is available which has estab­
lished theoretical values which may be used for static loading. 
In dynamic applications, fatigue tests must be made. 

Fig. 13 shows calculated stres~eflection curves for the springs, 
the characteristics of which are shown in Fig. 3. The solid 
lines in Fig. 13 are calculated for the upper edge of the inner 
circumference and the dashed lines for the lower edge of the inner 
circumference. Usually it is sufficient to calculate the streases 

Fro. 15 COMPUTED STRESS DISTRIBUTION OVER THE WIDTH OF A 
DISK SPRING. SPRING OF FIG. 14 DEFLECTED TO FLAT POSITION 

at t~e two edges of the inner diameter only since, except in 
special cases, the limiting stress occurs at one or the other of 
these locations. H we assume a maximum permissible stress 
of 200,000 lb per sq in., it will be noted that, for the spring 
proportions shown in Figs. 3 and 13, this stress is first reached 
in tension on the lower inner edge except for the spring having a 
free height of h - 0.350 in. which has a higher compressive stres11 
at the upper inside edge between 0.3 in. and 0.6 in. deflection. 

In addition to the load-deflection curve, Fig. 14 shows a 
calculated_ stress-deflection curve for a so-called zero-rate spring 
(h = t ,12). These stress values are for the upper edge of the 
inside circumference. 

In Fig. 15, the diagram shows in qualitative manner the stress 
~istr!bution across the radial width of the disk spring shown 
m Fig. 14 when deflected to the fiat position. l,'ote from Fig. 
15 that the upper surface is stressed in compression and that the 
maximum stress occurs at the edge of the inside diameter. The 
lower surface is stressed in tension but nowhere is the tension 
stress as great as the maximum compression stress on the upper 
surface. The stress in the central cone B-B is ai8o shown 
mainly to call attention to the fact that in springs of thill t~ 
the central cone is not a neutral surface. The basis for the 
stress distribution as shown in Fig. 15 will be apparent from 
Fig. 17 and from Appendix 1 where the formulas are derived. 
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Fig. 16 shows the stress distribution acrOBB the thickness at 
the inner circumference for this same spring and for the same 
conditions as for Fig. 15. The stress at the upper and lower 
edges will, of course, be the same as for Fig. 15. The stress at 
intermediate points is represented by the line joining these 
extremes. 

It must be noted from Fig. 15 that the streBS distribution 
for other springs will be different from that shown and will also 
be different for other deflections of the same spring as may be seen 
from Fig. 13. 

In the practical design of disk springs, it is found that they 
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Fm. 17 

will function satisfactorily under static Joe.ding when operating 
under computed stress as high as 200,000 to 220,000 lb per 
sq in. even though made from steel having a yield point of 
120,000 lb per sq in. The apparent high stress cape.city of 
disk springs may, in part, be due to shortcomings of the stress 
formula, due in turn to simplifying assumptions. These high 
values for computed stress are at the inner circumference. If 
it is assumed that the stress exceeds the yield point, there .must 
be a redistribution of stress due to localized yielding. If, when 

1oaded, the stress in the more highly stressed regions o:ibe:diiit -
spring were redistributed as a result of yield, it folio~ tmUie ·· 
unloaded spring will have residual stresses. This a IIJmilR. _ 
tie.ted by the fact that tests show a sme.11 initial loss m =­
height. The stress distribution, as shown by Figs. 1i ad :Ji, 
suggests that important increase in fatigue life should nsult~ 
careful rounding of the corners of disk springs. I...imi;ed ~ 
de.ta support this view. 

The safe stress of disk springs will, of course, vaiy 1litb 12 
type of service. There are not sufficient data now a~'lllt 
fix stress limits for dynamic applications. The f~ U!D 

which have been run indicate that, for a moderate stn:91 DJW!f,. 

a computed maximum stress of 180,000 lb per sq m. ~ iie 
used. Only fatigue tests on actual springs can finally cke1 1w 
the true working limits . 

Appendix I-Derivation of Formulas for Disk 
Springs 

The following nomenclature is used in deriving the bmrim 
for disk springs: 

a outer radius of disk 
b inner radius of disk 
c = distance of neutral axis to center 
a a/b - outer radius/inner radius 
f3 initinl cone angle of disk 
'I' change of cone angle due to Joa. P 
P = axial load, uniform.ly applied around circu~ 
h = free height of disk, measured as the elevation a. ;w 

truncated cone formed by either the upper or :W­
surface 

6 . = axial deflection of disk 
E = modulus of elasticity, taken as 30,000,000 lb per BQ n. 
S = maximum stress 
r = spring rate 
V = strain energy 
.!" resilience 
IT - Poisson's ratio, for steel IT - 0.3 
•1 radial strain 
ti tangential strain 
"' change of radial curvature 
"1 change of tangential curvature 
D flexural rigidity 

GENERAL CAsE-INITIALLr CONED D1s1t SPan.'"GS 

The method• used follows in general that used by S. 'I'JJD.."­
shenko' by assuming that the radial stresses are negligible and~ 
cross section of the disk does not distort, but rat.Mr ~ i:. 
merely rotates about a neutral point O shown in Fig. I',. 

(a) Load and Deflectiun. Qonsider a sector d8 of ~ ~ i:1 
Fig. 17 and in it a strip dx at location z taking O as the on_i:.,::... 
When the disk is deflected through an angle 'I', this suip ~-res 
into its position, indicated by dashed lines. The em:uing 1S.lt­

gential strain may be analyzed as the resultant of a ~ c;­
placement dr and a rotation 'I'· The first of these cau,es ~ _. 
form strain throughout the thickness of the disk if ~ ~ 
the small variation in distance to the center of the disk at ~ 
points of the section. The second results in a tangent.isl ~ 
strain which is zero in the neutral surface and max.mum st llae 
upper and lower surfaces. The tangential streBSes producoo by 
these two components of the strain cause a radial m~t 

' A similar method was used by W. A. Brecht and A. 11.1. Wal>l • . 
developing equations for radially tapered disk 11pringa. See n...... 
A.S.M.E., vol. 52, part 1, 1930, paper, APM-52-4, p . 65. 

• "Strength of Materials," by S. Timoshenko, D. Van N~ 
Company, New York, N. Y., 1934, vol. 2. p . 527. 
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about point O which resists the moment created by the extern.al 
forces. 

Calculating the tangential stress due to the radial displacement 
and first, we can write: 
The length of section d:r: before deflection 

11 ""'d8 [c-:ccos Pl 

After deflection 
l.., d8 lc-:z;cos (ti-,.)] 

The change in length 
l1 - l. ., d8 [-:z; COS ti (1 - COS rp) + :C Bin p sin 9') 

Substituting for small angles ,,, 
cos ti - 1; sin P-= P; sin" = ¥>i 1 - cos" - 2 sin1 rp - 2 

l1 - l. "" d8:z;rp (P - ,,/2) 

and the tangential strain will be approximately 

11 - i. :z;" (ti - ,,/2) .,---
l1 C - :C 

The tangential stress• 

E 
S's - -- (•t + 0'<1) 1- O't 

Since it was assumed that the radial stresses are negligible, we 
,can write 

Ets Ezrp(p-rp/2) 
S't-= -- = ( ( ) .. ... . . ... . [l) 

l-a-1 1-a-t) c-:z; 

As a next step, we calculate the radial moment of the tangential 
forces in the section a~ut point 0. 

dM1' -= S,'tdxdliz sin (P - rp) 

Substituting sin (p - rp) "" p - "and also Equation [l) 

dMi' = Etd8v, (ti - rp) (ti - ,,/2) :ct d:r: 
(1 - a-1) (c - :c) 

and integrating from :z; = c - a to :z; - c - b, we get the inter-
nal moment of the sector about 0. · 

M
1

' = ~td8,p (ti - ,p) (ti - rp/2) [! (a1 - bt) - 2c (a - b) 
1 - a- 1 2 

+ c1log r]. ... 12) 

Calculating now the tangential stress due to the bending 
strain mentioned above, we can write the expression for the t.Hn­
gential bending moment per unit length. 1 

• Mt "" D (,ct + O"K1) 

This expression is positive as the change of curvature is J)l>Ri­
tive in the case of a conical shell decreasing its height. 

Bending in the radial section being neglected, we have for a 
section of length d:r: 

Et• 
dM, = DK: d:r: - ,c,d:z; 

12 (1 - 0'1) 

The tangential curvature of the unloaded disk is approximately 

sin fJ 

c-:z; 

• "A Treatise on the Mathematical Theory o! Elasticity," third 
edition, by A. E. H. Love, Cambridge University Preee, London, 
England, p, 533. 

' Ibid., 1290, p. 533. 

and that of the deflected one 

sin (P - ,p) 

c-:c 

Hence the qhange of curvature 

sin p - sin (P - rp) 
"' = c-:z; 

Substituting sin p - p · 

sin (P - rp) - P - " 

rp 
Kt- -­

C-Z 

Hence the moment 

dM, ., E t• " d:r: 
12 (1 - a-1) (c - :c) 

Then the tangential stress at the surfaces 

, 6 dMt .Erp t 
S, - tJd:r: - (1 - a-t) (c - :c) 2 · · · · · · · · · · [3 ) 

and at any point y distant from the neutral surface 

S , E" 
, - (1 - a-t) (c - :c) II . . . . . . . . . . . • . l3a I 

The radial component of the moments dM, in sector d8 

d8 
dM1 == 2 dM,­

· 2 
Et•rpd!J d:r: 

12 (1 - a-t) (c - :c) 

Integrating for the whole sector from :z; - c - a to x .. c - b 

e-b 

M , Et'rpd/J f d:r: Et•rpd!J a 
1 

""' 12 (1 - a-t) ;=-; ., 12 (1 - v') Jog b · · · l4J 
e-a 

Summing the radial moments (Equatione [2 J and (41) 
the total radial moment 

M1 = M1' + M1' -= Erpd/J {[! (at - bt) - 2c (a - b) 
1-a-t 2 

+ ct log t] (p-rp) (t1- ~) t +:~log t} 
The value of c yet remains to be determined. Thie we get 

from the conditions of equilibrium on the sector, that the sum 
of all forces acting normal to the cross section must be equal to 
zero. Only stresses due to the radial displacement need be con­
sidered, however, since those due to bending have no resultant 
tangential force at any section :c. 

c-b 

f S,'td:r: - O 
e-a 

or substituting S,' from Equation (1) 
e-b 

from which we get 

f c:z;d:r;:z; -o 
e-a 

a-b c--- .... .. .. .. . ..... .. ... (6) 
a 

log -
b 
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Substituting this into the moment equation 

M,-= --- 2 a a 
Erpde {[! (a2 - b2) - 2 (a - b)' + (a - b)2] 

1 - a-' log b log b 

<,-,>(,-~)· + :;1o•i} 
The external moment on sector d8 equals 

P (a- b) d8 

2r 

This must equal the internal moment, hence 

p.,. 2 ,rM, 
(a- b) d8 

Substituting the expression for M1 and also 

h 
fj-=a-b 

0 

"'""a-b 

a 
b - a 

If we call [~ -
2 J" (-" )' = ..!_) 

,r a(- ~ -)1:g a 
1 

a - 1 M)~ .. ... . . . 161 

and - log a -- = -
6 a-1 N 
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.r: 
+ 
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I .I r// 
0
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F10. 18 LoAD AND STRl:88 CONSTANTS FOR CALCULATING DIS!!. 
SPRINGS 

P = (I _! :,) a' [ (h - o) ( h - ;) ~ + ~ J 
Investigation of simultaneous values of Mand N show them to 

be equal for practical purposes, so that 

P ""' (I _ ~~ Mas [ (h - o) ( h -i) t + t 1J .... [7] 

. outside diameter 
The value of M for vanous ratios of d are 

insi e diameter 
plotted in Fig. 18. 

(b) Mazimum Streu. The total tangential stress is the sum 
of its two components St' and S,'. Adding Equations (1) and 
[3a] 

8=81' +81'- E,p [x({J-!)+r]··[8] 
(1 .- a-1) (c-:z;) 2 

Its maximum value is reached at 
t 

y - - and :z; - c - b 
2 

S -= E ,p [cc - b) (fJ - !) + 1] 
(1- a-1)b 2 2 

0 . h d or since [J .,. a _ b an "' --­a - b 

S - (l _ a-; ~a_ b)I [ (~ - 1) ( h _ ;) +~a b b J 
Sb 

. . a-b da 
u st1tutmg c -= -- an - - a 

a b 
log b 

Eo [(a-1 )( a )
1

( ") a-1 S-= ---1 -- h-- +--
(1-a-')a' loga a-1 . 2 2 

(a al)' t] 
Let us caJI 

(~ - 1) (-" )' M - (" - l - 1)-6. - C1 
log a a - 1 log a ,r log a 

and 

a - 1 ( a )' a - 1 6 3 (a - 1) -- -- M----- - -c 2 a - 1 2 ,r log a .,,. log a 2 

6 (a-1)' where M "' N = -- -- from Equation [6] 
.,,. log a a 

Then 

s = (l _!,; Ma' [ c, (h-D + c.e]. .. .. .. [9J 

Values of C1 and C~ are plotted against outside-diameter/ 
inside-diameter ratio in Fig. 18. 

If the maximum stress in the lower edge is sought, evidently 
- t/2 has to be substituted into 8 and the stress equation becomes 

S =- (l -~'; Ma' [ C1 (h-0 - C,t]. . .. . . 10] 

Both Equations 19 J and (10 J represent compressive stresses 
as long as the bracketed quantity is positive. Obviously, both 
can become negative at some deflection, in which case the stress is 
tension. 
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By equating Equations [9) and (10) it can be shown that the 
numerical value of the stress in the lower edge reaches that of 
the upper edge at a deflection o "" 2 h. It follows that at o < 2 h 

. deflections, Equation [9 J baa to be used representing compressive 
stress in the upper edge, while at o > 2 h deflections, Equation 
110 J will give the greater value giving the tension stress in the 
lower edge of the spring. 

Because in some cases the maximum working deflection is past 
the point where Equation (9) would give its greatest value, it is 
advisable in doubtful cases to plot the stress-deflection curve for 
both upper and lower inner edges of the spring. 

As seen, for instance, on the last curve A in Fig. 13, the com­
pressive stress in the upper inner edge exceeds the maximum per­
missible stress, say 200,000 lb per sq in. at a deflection of o - 0.25 
in. , whereas in the deflection range of 0.67 to 0.72 in. both Equa­
tions 19 J and 110 J would give lower values than 200,000 lb per sq in. 
If the maximum working deflection is between the two limits men­
tioned, the calculated stre&< value at that point would not indi­
cate that the permissible stress limit baa already been exceeded· 
at a much smaller deflection. 

(c) Spriw; Rate. Differentiating Equation [7] gives an ex­
pression for the spring rate at any poipt of the load-deflection 
curve. Designating spring rate by r, we have 

r = Et (h1 - 3 oh ~ ~ o' + t1) . .•• • Ill J 
(1 - u 1) Ma1 2 

Equating the bracketed expression to zero, we can find the 
deflections at which the spring rate equals zero, i.e., where deflec­
tion may be increased without change in load. 

These are 

o - h + ~f- 2t ..... ..... ...... [12] 

When 
h1 2 t1 

- > - or h > t yZ ... . . . . . . .. ... . . .. . . .. [13) 
3 3 . 

there will be two real values of o corresponding to maximum and 
minimum values of P and the spring rate is negative between 
them, Fig. 6. If h = t y2, a spring is obtained which has 
only one point where the rate is zero and that at a deflection 
o = h,, i.e., when the spring is flattened, Fig. 14. In cases where 
h < t y2, the spring rate is always positive. 

If the condition for the so-called zero-rate spring 

o = h = t y2 ........... . .. . . .. . . [14] 

is substituted into Equation 17], we get 

yr E 
P = 

2 
I' . . .... . .... . ... [15) 

(1- u 1) Ma' 

which is the load carried by such a spring at the point of zero 
spring rate. The corresponding stress from Equation [9 J 

t1 ,v2E (v2 ) S = - C1 + 01 .. .. . .. .. [16) 
· (1 - u') Ma' 2 

TIJl' re is a further significant relationship. Considering Equa­
l i, ,r: :7 1, the load P may become zero if the bracketed quantity 
nrn, ,i,,·~. Thus writing 

(h - o) ( h -0 t + t•_ - o 
Rnd ~olving for o 

o = ~ h + ~~ 2 t' .. . ... . .. ....... {17] 

h' 
H 4 > 2 t' or h > t vs ... ......... . {18) 

then the load-deflection curve intersects the zero-load axis, that is, 
we have a buckling spring, one which would snap into a new posi-

tion once deflected beyond a certain point. H 0 < ~ < y8 
t 

we shall have a spring with negative spring rate, but one which 
will not buckle. 

(d) Initially Fla/. Disk Spriw;s. The equations for initially 
flat springs can be derived by substituting h = 0 into those de­
veloped for initially coned springs. Thus we have for the load 

- E o (o' t ) 
p = (1- u 1) Ma' 2 + t' . . . . . ... . .. [l9 J 

for the maximum stress 

S = ( E O (c1 ~ ; C,t)_. .. .. .... [20) 
1- u 1) Ma• 2 

which in this case is always tension in the lower inner edge of the 
spring. 

From Equation [19 J, the deflection can be expressed as 

0 .. 

The rate becomes 

PMa2 

Et1 

1-.,., 

1 + 0.5!' 
t1 

'Et (3 ) r - ----- - o• + t' . .... . . . ... [21 I 
(1 -:- u 1) Ma1 2 

(e) ReBilience of Disk Spri111JB, The strain energy for o deflec­
tion is 

I 

V - f Pdli ... . . ... . .. . ..... .. [22) 

0 

H we substitute into this P from Equation [7) and integrate, we 
have 

V = 2 (I~:') Ma2 [t (h-~)1 + t•J. ... ... (23] 

The volume of the spring may be written as (a' - b') ,r t -

a' a' -
1 

1r t so the resilience or the strain energy per unit volume 
a' 

r -= 2 1r (1 ~
0
:,) Ma' (a2 a' i) [ ( h - ~y + t2

]. • [24] 

H the resilience for a given maximum permissible stress is sought, 
the corresponding value of o may be computed from Equations 
[9) or (10). 

Appendix 2--Calculation of Disk Springs 
INITIALLY CONED DISK SPRINGS 

When calculating disk springs with large deflections, the 
formulas given in Appendix 1 do not lend themselves to an eMy 
evaluation of the dimensions. In most cases of practical cal­
culation, the load, outside and inside diameters of the spring, 
the maximum permissible stress, and a general type of load­
deflection curve are given which leaves the deflection, thickness, 
and free height to be calculated. 

Deflection Equation [7 I does not lend itself to ready 110lution 
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even when the thickness and free cone height are known- as the 
equation is cubic; therefore, it is recommended that the following 
method of approach be employed. 

AB, in most cases, a low spring rate is desirable, assume that 
the desired load is carried by the spring when it has its lowest 
rate, that is, when o = h, or when the spring is flattened. Equa­
tion (7) then simplifies to 

The ratio of h/t has to be assumed now, bearing in mind that 
as shown in Appendix 1 if (h/t) < V2 we get a spring with posi­

tive, though variable, rate as shown in Fig. 5. If (h/t) = V2 
the spring will have a point of zero rate as shown in Fig. 14. If 
(h/t) > V2 it will have a range of negative rate as shown in 
Fig. 6. Finally, if (h/t) > VB it becomes a buckling spring. 
The thickness and free height can now be computed and since 
o = h, the deflection is also known. These values have to be 
substituted now in Equations (9 J or (10) as explained in Appen­
dix I, and the maximum stress computed. If that is too high, 
a lower value for h/t has to be chosen meaning, of course, an 
increased spring rate in the .flattened position. A few trial 
calculations are usually sufficient. 

If a low spring rate has to be maintained at the specified 
loading, four courses arfl open: (1) Change the outside-diameter­
inside-diameter ratio so that it will lie between 1.6 and 2.4; 
(2) increase the outside diameter; (3) decrease the load on each 
spring by using two or more springs in parallel; and (4) increase 
deflection by using several springs in series. 

Example. Calculate a spring with the following data: Load 
P .. 1000 lb, maximum permissible stress S = 200,000 lb per 
sq in., outside diameter -2a = 6 in., inside diameter 2b = 3 in. 
From Fig. 18, M = 0.69, C, = 1.225, and C1 - 1.38; also. 
1-cr1 ... 0.91 if er = 0.3. 

Assuming that a zero rate is desirable when carrying the 
specified load, we take h/t = v'2, and so from Equation [25). 

~ /P(l - cr1) Ma1 _ ~ /1000 X 0.69 X 9 X 0.91 _ . 
t '"' " v2E - " 1.414 X 30 X 10• - O.l0

7 
m. 

h • 0.151 in. - o 
The maximum stress from Equation (9 J 

8 Eo (c h c ) 30 x 10• x 0.151 
= (1 - cr1) Ma1 

1 2 + it ,,. 0.69 X 9 X 0.91 (1.225 

X 0.076 + 1.38 X 0.107) ... 198,000 lb per sq in. 

Now the load-deflection curve can be pl~tted assuming various 
values of o and calculating P from Equation (7]. 

INITIALLY FLAT SPRINGS . 

The procedure used for initially coned disk springs cannot 
be used when dealing with initially flat springs. hi this case, 
the following method is applicable. Equations (19) and (20) 
for the calculation of load and minimum stress are 

Eo (o't ) p - - +t• 
(1 - cr1) Ma' 2 

S Eo ( o ) 
- (1-cr') Ma' C, 2 + C,t 

Dividing the two equations and simplifying, we have 

C, t 
S 2 + C1 6 

.,,_ = = A' or 

p !~ + (!.)' 
2 o o 

A = o ~l-........ . , ........ [26] 

where A is a function of the ratio t/o and a. 
Again, from Equation [19 ], we get 

p = (1 -~~; Ma' [H + G)'J or 

Eo' 
p = (1 - cr2) Ma' BZ . . . . .. ..... .... (27] 

where 

B = ~H+G)' 
The various values of A and B are plotted on a logarithmic scale 
against t/o in Fig. 19. The procedure is that of trial and error. 
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FIG. 19 CONSTANTS FOB C.~LCULA.TlNG INITIALLY FLAT DIBX 
8PBINGS 

Assuming that the load, the maximum permissible stress, and out­
side and inside diameters are given, we proceed by taking first an 
arbitrary value for the deflection o and calculate the value A from 
Equation (26 J. The value of B on the same vertical scale can 
then be read off the curve given in Fig. 19, and substituted in 
Equation (27] which then gives a value for the load. If this is 
higher than the desired load, a smaller deflection has to be as­
sumed and the process repeated. Vice versa, too small a load 
calla for an increase of o. After several trials, one can usually 
obtain the desired load, then read from Fig. 19 the value t/o 
corresponding to the value of B used last, This gives all the 
relevant information. 

Example. Find thickness and deflection for a spring with the 
following data: Load P = 2000 lb, maximum permissible 11tre1111 
S = 200,000 lb per sq in., outside diameter 2a = 6 in., inside 
diameter 2b = 3 in. 

Then from Fig. 18 the load constant M - 0.69. 
Assume 8 = 0.4 in., then from Equation (26 J 

, _ /200,000 
n. "" 0.4 "· 2000 = 0.4 X 10 = 4 
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From Fig. 19, B = 0.21. 
From Equation (23] 

p = 30 X 10• X 0.44 X 0.211 _ l 
0.91 X 0.69 X 31 6000 b 

As a second trial, take now ti = 0.2. Then A = 2. B = 0.55 and 

p 30 x 10• x 0.24 x 0.551 
-= 0.91 X 0.69 X 31 - 2570 lb 

Again, take ti = 0.16. Then A "" 1.6, B = 0.76 

-and 

p - 30 x 10• x 0.164 x 0.761 -
- 0.91 X 0.69 X 31 2010 lb 

If this is considered sufficiently close, we get t/ti - 0.64 from 
Fig. 19 or t = 0.64 X 0.16 - 0.102 in. 




