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ABSTRACT

A method is developed for the determination
of tangential residual stress distribution in
curved beams of rectangular cross- section.
The determination of such distributions is
based upon the fact that when a residually
stressed and thin layer is removed from the
periphery of the beam, the radius of curvature
of the beam changes. By knowing this change,·
it is possible to calculate the stress in the
layer removed.

The method developed may be handled on a
desk calculator, although it may be extremely
laborious. The method is more easily handled
using machine computation facilities.

INTRODUCTION

This report presents a theory for the cal
culation of the tangential residual stress
distribution in curved beams of constant rec
tangular cross-section. The theory is based
on the fact that if such a beam is residually
stressed and a thin layer is removed from its
periphery the radius of curvature of the beam
will change. By knOWing this change, it is
possible to calculate the stress that was in
the layer removed. The assumption is made
that the residual stresses in the radial and
axial directions are negligible.

Pr.esented by title at the Spring Meeting of the Society for
Experimental Stress Analysis in Cleveland, Ohio, May, 1958.

The equation developed in this report for
the residual stress in a curved beam is com
plicated and would be extremely laborious to
evaluate with a desk calculator. However, the
equation can easily be evaluated by a digital
computer. If the digital computer is not avail
able, the theory used for straight beams can
be used on curved beams without a prohibitive
error. For curved beams in which the ratio
of the radius of curvature of the centroid of
the beam to the radial thickness is 10: 1, the
theory used for straight beams may be applied
with an error of less than 4 percent. For a
ratio of 5: 1, the error is less than 10 per
cent[l]*. However, for smaller ratios and for
greater accuracy, it is necessary to use
curved beam theory. The theory presented
here is not exact, but the results obtained
using it are in very good agreement with those
obtained using the exact solution,which is
considerably more complicated. The error is
less than one-half percent for a radius to
thickness ratio of 4: 1 [2] .

THEORY

First it is necessary to UI}derstand what
happens to a residually stressed curved beam
when a thin layer is removed. Consider the
beam of unit width shown in Fig. 1.

If in the infinitesimal thickness dz there is
a stress s, the removal of the layer dz will
remove a force s·dz. Now this force at the
surface of the beam can be resolved into a

* Superiors in brackets pertain to references listed at the
end of the paper.
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where A is the area of the cross-section, e is
the distance from the centroid to the neutral
axis, and E is Young's modulus. The minus
'sign is needed if M is defined as above.

Substituting (1) in (3), equating the right hand
sides of (2) and (3), and rearranging terms
gives

The bar is assumed to be of unit width. M is
defined to be positive if the curvature of the
beam decreases. But the bending moment is
also give~ by [4]

if dR is very much less than R.

Finally consider the curved beam shown in
Fig. 3. Let the tangential residual stress dis
tribution in the beam be represented by S(Z,x)

at any time during the dissection.
The variable z refers to the thickness of

metal removed from the outside surface, and
the variable x refers to the location of the
stress below the original outside surface. At
any time during the metal removal x lies be
tween z and t, or is equal to z or t. The ini-

. tial stress distribution in the beam before any
metal has been removed is S(O,X), and theini
tial stress in the outside surface S(O,O)' The
stress in the 'new outside surface after a thick
ness z has been removed is S(z,Z). The radius
of curvature of the centroid of the beam is a
function of the amount of metal that has been
removed. Let this function' be represented
by R(z).

Now suppose that a thickness z has been re
moved from the outside of the curved beam,
Fig. 3, and ~n additional elemental thickness
dz is being removed. The bending moment re
sulting from the removal of the layer dz is
given by
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pure bending moment and a force that pro
duces a direct stress uniformly distributed
over the cross- section. For the latter the
force must be applied at the centroid of the
cross-section [3]. If this is done, the moment
arm o~ the pure bending moment is t/2 as in
dicated in the figure, and its magnitude is
s· dz' t/2. The magnitude of the direct stress
is s' dZ/t.

Now consider the beam shown in Fig. 2 as
the radius of curvature of the centroid changes
from R to R + d R due to pure bending. The
neutral axis is denoted by n - n and the centroid
by c-c. The angle.ep subtends an arc length b

on the neutral axis as does the angle ep + d¢

and e is the radial distance between the neu
tral axis and the centroid.

Now consider the ratio de/> Ie/> • This ratio
appears in many of the equations of curved
beams. To measure either quantity, however,
would be difficult. But d¢/¢ may be expressed
'in terms of the radius of curvature of the cen
troid of the beam which is easily determined.



THEORY FOR THE CALCULATION

Substituting Eqs. (9) into (8) gives

ER'(z)[(t-z) - 2e - 2m]dz
dS b = (10)

[2R(z) - t + z + 2m][R(z) - e]

The total change in stress at section s- s
due to the removal of the layer dz is, adding
(7) and (10),

s

FIG.3.
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5(z,z) = - --
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(5)

-2EeR'(z)dz

dS=dSd+dS b = [R(z)-e](t-z]

ER'(z) [(t - z) - 2e - 2m] dz

+ [2R(z) - t + z + 2m][R(z) - eJ' (11)

Now suppose that a layer z= t - m has been
removed from the beam. The change in stress
at s:ection s-s will be the sum of all the
changes from each elemental thickness dz re
moved. Therefore,

The cut dz produces a change in stress at
the section s-s, which is m units outside the
inside diameter, due to a change in direct
stress and a change in bending stress. The
change in direct stress is

Z i 2EeR'(z) dz

1 dS = S(z,z) - 5(0,z): 1
o - o..[R(z)-eJ(t-z]

1
i 'ER'(z)[(t - z) - 2e - 2m] dz

+ 0 [2R(z)-(t-z)+2m][R(z)-e]' (12)

The change in bending stress at section s - s
is [4]

S(z,z)dz
dSd= t-z

Substituting (5) in (6), we get

2EeR'(z)dZ
d 5 d : - -[-R-(z-)---e-J-(t---z)

My

dS b = Ae(r -y) ,

(6)

(7)

(8)

However, S(z,Z) is known from (5), and m = t- Z.
Making these substitutions in (12) and re
arranging terms gives

2EeR'(z) i eR'(z)dz
S(O, z): - ,+ 2Ef ...,.------=-=-----=-

R(z)-e o [R(z)-e][t-z]

i R'(z)dz
+2E(t-Z)1 -

o [R(Z) - eJ[2R(z) + t + Z - 2z]

f
ZR'(z>[(t - z) - 2e] dz

- E 0 [R(z) - e][2R(z) + t + Z _ 2z]· (13)

Now as a first approximation [5],

where M is given by (2), y is the distance from
the neutral axis to section s - s and is taken as
positive toward the center of curvature, A the
area of the cross-section, e the distance from
the neutral axis to the centroid, and r the ra
dius of curvature of the neutral axis.

r = R( z) - e.

_ 2E(t-Z)2 R,(Z) Z (t-z)R'(z)dz
5(O,z) = - _ _ + 2E1--~-----='

J2 [R (z )] 2 - (t - z) 2 0 12 [R (z )] 2 - (t - z) 2

_ i . J2R(z)R'(z)dz

+ 2E(t - z)~ {12 [R(z)] 2 _ (t _ Z)2}[2R(Z) + t + Z - 2z]

_ 1% [12(t-z)R(z)-2(t-z)']R'(Z)dZ (15)
E 0 {12[R(z)J2 - (t - z)2} [2R(z) + t + Z - 2z] •

t - z
~ = - S(Z,Z) dz -2-

t - z
Y=-2-- e - m ,

A= f-z,

Ee R'(z) dz (t - z)

R(z) - e

(9)

(t - z) 2
e=--.

J2R(z)

Making this substitution in (13) gives

(14)
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CONCLUSiON

It may finally be seen that Eq.· (15) gives the
stress at the depth X" i before any metal has
been removed. Therefore, the equation gives
the original tangential residual stress dis
tribution in a curved beam, if the radius of
curvature of the centroid of the beam is known
as a function of the thickness of metal re
moved( Unfortunately, this will not be an
analytic function so numerical methods are
used to evaluate the equation. In order to de
termine R(z), the radius of curvature of the
centroid of the beam, D(z), the inside diameter
of the beam, is measured. Then R(z) for any
value is given by

INSIDE DIAMETER MEASUREMENT

It is essential that the inside diameter, 0 (z) ,

of the curved beam be measured with care;
particularly when the derivative of D(z) is .
small. At the Research Staff, the inside di
ameter is measured by means of a commer
cially available remote printing comparator
having a minimum division reading of 0.00005
inch.

For example, if a curved beam having a
nominal inside diameter of 0.5 inch and a wall
thickness of 0.05 inch experiences a di

. ametral change of 0.00005 inch when a layer
0.001 inch thick is removed, a stress change
of about 4,000 psi is indicated..

where (t - z) is the radial thickness of the
beam. By inspecting the equation for R(z) it
may be seen that R(z) will change if D(z) and/or
(t - z) change.· The first term is due to bending
and the second is due to a change in thickness.
The only change in R(z) that can be considered
here is the change due to bending, so when the
derivative of R(z) is taken, (t - z) must be con...
sidered a constant. Then R'(z) for any value
of z is given by

D(z) t-z
R(z) :: -2- + -2- ,

0' (z)
R'(z):: --2 .

(16)

(17)
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