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Strain-Controlled Fatigue Behavior of
ASTM A36 and A514 Grade F Steels and
5083-0 Aluminum Weld Materials

For steel weld materials, tensile and strain-controlled fatigue properties
vary with hardness and, although the hardness relationships for
aluminum vary from steel, the mean stress relaxation behavior of all weld
materials is found to be a function of the same material parameters

BY Y. HIGASHIDA, J. D. BURK, AND F. V. LAWRENCE, JR.

ABSTRACT. The tensile and strain-
controlled fatigue properties of base
metal (BM), weld-metal (WM), and
heat-affected zone (HAZ) material
were determined for weldments of
ASTM A36 and A514 grade F steels and
5083-0 aluminum. The mean stress
relaxation behavior of these weld
materials was also investigated. The
HAZ properties were determined from
specimens produced using a weéld
thermal-cycle simulator. The WM
properties were obtained using speci-
mens machined from weld metal
deposits.

For the steel weld materials, the
tensile and strain-controlled fatigue
properties were found to vary with
hardness. The fatigue resistance at
lives greater than the transition fatigue
life was found to increase as the hard-
ness of the steel weld materials (BM’s,
WM’s, HAZ's) increased. Properties of
BM and WM for the 5083-0 aluminum
welds did not obey the hardness rela-
tionships found for the steels, but the
mean stress relaxation behavior of all
the weld materials considered was
found to be a function of the same
material parameters.

Introduction

The most common sites for fatigue
crack initiation in welds are the weld
toe, the weld root, or internal discon-
tinuities.'* In the first case, the crack
initiates in untempered weld metal
(WM) or grain coarsened heat-
affected zone?® (HAZ) near the edge of
the weld reinforcement and then
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propagates through the HAZ and base
metal (BM). In the latter cases, the
crack initiates and propagates in tem-
pered weld metal. These sites are
shown schematically in Fig. 1.

Previous studies of the fatigue
behavior of weldments, summarized
by Gurney? and Pollard and Cover}?
have dealt with fatigue behavior of
weldments  without separating the
effects of WM and HAZ microstruc-
tures. Only a limited number of stud-
ies have been undertaken to study the
fatigue behavior of WM and HAZ, and
most of these have been studies of
fatigue crack propagation which have
shown that the HAZ does not strongly
influence the crack propagation
rate." 2 Most studies of fatigue crack
initiation in WM and HAZ using
smooth specimens have been con-
ducted under stress control*-',

Weld toe fatigue cracks usually
initiate in the grain coarsened region
of the heat affected zone (hereafter
HAZ)." The width of the grain coars-
ened region in the welded joint is too
small to permit direct measurements
of strain-controlled fatigue properties.
For A514 welds, the width of the coars-
ened region is about 0.05 in. (1.3 mm)
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or less. It was necessary, therefore, to
reproduce the weld thermal cycle in a
smooth specimen large enough for the
normal methods of strain controlled
fatigue testing.

Three methods have been common-
ly employed to reproduce HAZ mi-
crostructuresin test specimens: furnace
heating,** ' high frequency induction
heating,'™'*** and direct resistance
heating.*** The direct resistance heat-
ing method was judged maost suitable
and was used in this investigation.

Strain Controlled Fatigue Properties

The smooth specimen fatigue be-
havior of a metal tested under reversed
strain control may be characterized by
four material parameters-* which
relate the strain amplitude ( €,) to the
failure life (2N,)—see Table 1.

, oy
€, = € (2N + ? (2N)® (M

Mean stress (o,) effects mav be
included through the modification®”:

(ot —0o,)

= NG

(2N (2)
where € and ¢ are the fatigue ductil-
ity coefficient and exponent, and o
and b are the fatigue strength coeffi-
cient and exponent. An additional
useful index of fatigue resistance is the
transition fatigue life (2N,,) which is
the life of a smooth specimen under
strain control at which the elastic
(Ae./2) and plastic (A e,/2) strain
amplitudes are identical.
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Fig. 1=Possible fatigue crack injtiation sites in a weld: A—one pass weld metal
(WM(1P)), B—heat-aficcted zone (HAZ), and C—two pass tempered weld metal

(WM(2P))
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As shown by equation (2), the mean
stress {o,) has an influence on crack
initiation life. The mean stress (o) at
any reversal (2N) has been shown to
relax according to the power func-
ﬂon:;’u..m

Oy ey = Oy 2N-1)% (4)

where o, ; is the initial mean stress
and k is the relaxation exponent which
is dependent on strain amplitude
(e.)

The monotonic and cyclic stress-
strain properties of a material may be
represented by elastic and plastic
strain components as:*

Monotonic

o o)1
i (E) >
Cyclic

& ()—él ;};
Ga= ot (T<7 (6)

where K (K’) and n (n’) are the mono-
tonic (cyclic) strength coefficient and
strain-hardening exponent.

Object and Scope

ASTM A36 and A514 steels and 5083-
0 aluminum were chosen for study
because:

1. A36 steel is a typical construc-
tional grade ferritic-pearlitic  steel
widely used for land vehicles and
structures and is easily welded without

special heat treatments,

2. A514 steel is a typical, construc-
tional grade, low-alloy, martensitic
steel widely used for pressure vessels
and structures and is also readily
welded.

3. 5803-0 aluminum is a readily
weldable hardening aluminum atloy
used in cyrogenic applications.

Completely reversed, uniaxial strain-
controlled tests of the smooth speci-
mens were employed to study fatigue
behavior of BM, HAZ, and one- and
two-pass WM’s for A36 and A514
welds and BM and WM behavior of
5083-0 welds. Mean stress relaxation
tests were also conducted for each
material at a constant mean strain and
at various strain amplitudes.

Experimental Program
Specimen Preparation

Base metal specimens of A514 steel
(A514-BM) and  5083-0 aluminum
(5083-0-BM) were machined from %
in. (19 mm) and 1t in. (25 mm) thick
plate keeping their axes parallel to the
rolling direction of the plate—Fig. 2A,
The HAZ specimens were machined
from base plate and then subjected to
the simulated weld thermal cycles
after which they were machined to the
final dimensions as shown in Fig. 2B.
Heat-affected zone specimens of 5083
aluminum  base metal were not
made.

Five series of weld metal specimens
were prepared: E60S-3-WM(TP) was
machined from a one-pass butt
welded joint of A36 steel plates using a
Yis in. {1.6 mm) diameter E60S-3 elec-
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trode; E60S-3-WM(2P) was machined
from a two-pass butt welded joint of
A36 steel plates using the same elec-
trode as  E60S-3-WM(1P);  E110-
WM(TP) was machined from a one-
pass butt weld of A514 steel using a '
in. (1.6 mm) diameter £110 electrode;
E110-WM(2P) was machined from a
two-pass butt weld of A514 steel using
the E110 electrode; and 5183-WM was
machined from a two-pass double-V
butt weld of 5083-0 aluminum using a
5183 electrode.

All welding was in the flat position
using gas metal arc (GMA) processes.
After welding, the weld depaosits were
radiographed to check for internal
defects. The welded plates were then
saw-cut into blanks with their axes
normal to the welding axis. The blanks
were then machined to the dimen-
sions shown in Fig. 2A for monotonic
tension tests and Fig. 2C for fatigue
tests.

Chemical compositions are shown
in Table 2, and the welding parameters
are listed in Table 3.

Simulation of HAZ

The weld thermal cycle at the HAZ
adjacent to the fusion line was
measured. Chromel-alumel thermo-
couples (0.020 in. (0.51 mm) diameter)
were spof welded onto the surface of a
A36 or A514 steel plate near the fusion
line. The location of the thermocouple
was determined by preliminary mea-
surements to define the fusion line
position. The thermocouples were
electrically and thermally shielded and
were connected to an oscilloscope.
The thermal cycle was photographical-
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Table 1—List of symbols

o, € True stress and strain
Strain amplitude, transi-
tion strain, and mean

€o €t €nm

strain
Ae /2 Plastic strain amplitude
o, Mean stress
o 1) To. ax Initiat and current mean
stress

2Ng, 2Ny, 2N Reversals to failure, tran-
sition fatigue life, rever-

sals

K, K" = Monotonic and cyclic
strength coefficient

n,n Monotonic and cyclic
strain hardening expo-
nent

E Elastic modulus

€, O True strain and stress at
fracture

P Fatigue ductility and
strength coefficients

c, b Fatigue ductility and
strength exponent

k Relaxation exponent

BHN, DPH Brinnell and diamond
pyramid hardness num-
ber

Se, Oy Ultimate strength and

cyclic yield stress

N

ly recorded. Typical traces are shown
in Fig. 3.

A weld thermal cycle simulator was
developed (Fig. 4) to reproduce uni-
form(y the measured weld thermal
cycle in a specimen large enough for
monotonic tension and fatigue tests.
The specimen in (Fig. 2A). was held in a
pair of water-cooled OFHC copper
grips. The grips and specimen were
mounted on a wooden stand and fixed
to prevent transverse distortion of the
specimen at high temperatures but not
longitudinal movement. The specimen
was heated by a current from the
secondary of the step down transform-

r (Fig. 4), and the temperature was
measured by a thermocouple spot
welded to the center of the specimen.
The heating rate was controlled by
setting the temperature controller to
some fraction of total output.

When the temperature of the speci-
men reached the maximum tempera-
ture desired, the current was shut off;
and the specimen was allowed to cool.
The cooling rate was controlled by the
flow of the grip cooling water and the
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Fig. 2=Smooth specimens of A—base metal, B—heat-affected zone, and C—weld
metal materials; all dimensions are in inches (mm)

Table 2—Chemical Compositions of Base and Filler Metals, Wt-%

Material

C Mn P S Si

Ni Cr Mo Cu Fe

ASTM A36™ 021 1.1 012 0021 <010 <010 <008 <010 310 Bal

E60S-3 0.09 1.0 0017 0024 0.50 - - - — Bal.
ASTM A514=  0.20 082 0010 0.016 0.24 0.08 0.51 0.20  <0.01 Bat.
E110 0.08 1.70 0.005 0.009 0.46 2.40 0.05 (.50 — Bal.

Si Fe Cu Mn Mg Cr n Ti Zr Al
ASTM 5083"0 014 022 005 064 4.50 0.08 0.04 0.03 <0.001 Bal.
5183 ) 012 017 002 057 4.96 0.07 0.03 0.09 - Bal.

= Compaositions based on chemical analysis—others are typical as supplied compositions.,

flow of argon gas directed onto the
specimen. Once the correct condition
was determined, it was possible 1o
subject specimens to reproducible
weld thermal cycles such as that
shown in Fig. 3.

Hardness and metallog,raphn( stud-
ies were performed on the simulated

HAZ specimens and compared with
the actual weld HAZ. Figure 5 shows
the resuits of a Vickers Pyramid hard-
ness traverse 0.1 mm {0.004 in.) below
the plate surface for A36 and AST4
one-pass butt welds. The results of a
hardness traverse for A36 and AS514
simulated HAZ specimens are shown

Table 3—Welding Parameters

Travel

Plate Electrode speed,

Weld (base/ thickness, diameter, Voltdge, Current, mm/

filler metal) mm'® mm \% A mir;{.;‘”
A36/E60S-3 22.2 35 500 370
A514F/E110 191 30 290 432
5083-0/5183 254 24 280 420

Shielding

Preheat Heat gas
temperature, input, composition,
(°Q) KJ/mme vol-%

22 2.80 Ar-2% O,
96 1.20 Ar-2% O,
22 0.95 He-25% Ar

T mm = 004 in.
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A514 and A36 bhutt welds

Fig. 6 which indicates that the simu-

ed HAZ specimens were homoge-
ous i hardness within the gage
agth.,

Both average values and ranges in
“ardness numbers inside the gage
“ngth of each specimen were very
tiose to those of each actual weld
HAZ (Figs. 5 and 6). For example, the
average  hardness numbers of the
actual HAZ (grain-coarsened region)
and simulated HAZ within the gage
fength were 257 DPH and 255 DPH for
the A36 steel, respectively, and 497
DPH and 496 DPH for the A514 steel.
Hardness values for the A514, A36, and
5083-0 weld materials are listed in

Distance from the Center of the Specimen, inches

Distance, inches

Fig. 6—Vickers hardness survey along the axis and across the
diameter of both A574 and A36 simulated HAZ smooth speci-

mens

Tables 4 to 6.

Metallographic examination was
carried out on both the actual weld
HAZ and the simulated HAZ speci-
mens. Excellent correlation was ob-
served in comparison between the
actual weld HAZ and the simulated
HAZ microstructures. '

Mechanical Testing

Tension tests were conducted using
a 20 kip MTS hydraulic test system
similar to that described by Feltner and
Mitchell.*" A clip-on extensometer (0.5

in. (12.7 mm) gage length) was used to
measure strain for the base and weld
metal cylindrical specimens, while a
0.26 in. (6.6 mm) gage length exten-
someter was used for the HAZ speci-
mens. The weld metal specimens were
hourglass-shaped and required the
measurement of diametric strain and
its conversion to axial strain by means
of an analog computer.*

Fatigue tests were conducted with
the same apparatus used for monoton-
ic tension tests. Axial strain was
controlled for the smooth specimens
of A514, A36, and 5083-0 weld materi-

Table 4—Tensile Properties of Base, Weld, and Heat-Affected Materials for ASTM A514F/E110 Welds

Material

Hardness, DPH/BHN

Modulus of elasticity, E, X 10 ksi (MPa)
0.2% offset yield strength, ksi (MPa)
Ultimate tensile strength, Su, ksi (MPa)
Reduction in area, %

True fracture strength, o, ksi (MPa)
True fracture ductility, e

Strain hardening exponent, n

Strength coefficient, K, ksi (MPa)

A514-BM A514-HAZ
320/303 4967461
30.3 (210) 30.3 (210)
129 (890) 171 (1180)
136 (438) 204 (1408)
63.0 52.7
216 (1490) 326 (2250)
0.994 0.750
0.060 0.092
172 (1187) 306 (2110)

ETI0-WM(1P) ET10-WM(2P)

382/362 327/310
30.3 (210) 30.3 (210)
121 (835) 110 (760)
150 (1035) 132 (910)

57.6 59.3
320 (2208) 241 (1663)

0.857 0.899

0.092 0.085

226 (1560) 187 (1290)
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Table 5~Tensile Properties of Base, Weld, and Heat-Affected Materials for ASTM A36/E605-3 Butt Welds

Material

Hardness, DPH/BHN

Modulus of elasticity, £, x 10% ksi (MPa)

0.2% offset yield stren;,th, ksi (MPa)
Ultimate tensile strength, Su, ksi (MPa)
Reduction in area, %

True fracture slrengjth, ay, ksi (MPa)
True fracture ductility, €,

Strain hardening exponent, n

Strength coefficient, K, ksi (MPa)

A36-BM A36-HAZ
1687160 255/243
_ 275 (190) 27.4 (189)
; 32.5 (224) 775 (534)
60.0 (414) 7 (667)
9.7 (481) 52 5 (362)
138 (952) 133 (918)
1.19 0.745
0.0146/0.258 D.102
113 (780) 142 (980)

E60S-3-WM(1P) E60S-3-WM(2P)

2457233 2117201
27.4 (189) 27.4 (189)
84.1 (580) 59.2 (408)
103 (710) 84.0 (580)
44.6 (308) 60.7 (419)
143 (987) 147 (1014)
0.590 0.933
0.098 0.130
143 (987) 123 (849)

Table 6—Tensile Properties of Base and Weld Metal Materials for ASTM 5083-0/5183

Aluminum Welds

Property
Hardness, DPH/BHN

Modulus of Elasticity, E X 10° ksi (MPa)

0.2% offset yield strength, ksi (MPa)

Ultimate tensile strength, Su, ksi (MPa)

Reduction in area, %

True fracture strength, o, ksi (MPa)
True fracture ductility,

Strain hardening exponent, n
Strength coefficient, K, ksi (MPa)

5083-BM 5183-WM
106/93 105792
10.3 (71) 10.3 (71)
19 (131) 20 (138)
42.6 (294) 433 (299)
30 33
60 (414) 61 (421)
0.36 (.40
0.129 0.133
43.4 (300) 44,5 (307)

als as previously discussed. A sine-
wave function generator was used to
generate the strain or stress history.
Test frequencies varied from 0.1 to 10
Hz. Stress-strain hysteresis loops were
recorded at intervals to determine
cycle-dependent changes in stress and
plastic strain amplitudes.

Mean stress relaxation tests with
constant mean strain but variable
strain amplitude were conducted. A
typical strain-block-sequence used is
shown in Fig. 7. A stabilization block
was applied to each specimen to
ensure stabilization of the hysteresis
loop before inducing a mean stress

and studying its relaxation behavior.
Each initial mean stress of the mean
stress relaxation blocks was induced
by applying a mean strain. Mean stress
(0,) as a function of cycles was then
measured under a constant strain
amplitude.

Results
Monotonic Stress-Strain Behavior

Tensile properties of A36, A514, and
5083-0 weld materials are listed in
Tables 4 to 6. The monotonic true
stress-strain curves for the ten micro-

SB - Stabalization Block

RB RB - Relaxation Block
0.006 1 / RE
RB
7 RB
0004+ 7 %
7
SB 1S58 SB 5B SB
/! D
NN S
.002 N
. © N ‘\ \
AN % N N
-~ I
B o1 N \\
\\\ N Time, t
N \
.
\}\ O\ N )
-0.002 < O\ .
N - N
N N :
2 » ) » w i
000442 w8 B . 3 . @
Ca © 3 © % (ol (eI
> > - > - > - >
@ a @ W U
@ @ « @ 3

Fig. 7=Strain control history for mean stress relaxation test of aluminum

5183-WM
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structures studied are shown in Figs. 8
to 10. For the A36 weld materials (Fig.
8), the E60S-3-WM(1P) has the highest
yield and ultimate strength, the A36-
HAZ has the second, and the A36-BM
has the lowest.

The order for higher true fracture
ductility is opposite, For the A514 weld
materials (Fig. 9}, the order for higher
ultimate tensile strength and lower
true fracture ductility is: A5T4-HAZ,
ET1I0-WM(1P), A514-BM, and E110-
WM(2P). However, the order for high-
er yield strength is: A514-HAZ, A514-
BM, ET0-WM(1P), and E110-
WM(2P).

For the 5083-0 weld materials (Fig.
10), the strength, ductility, and ulti-
mate strength are essentially identical
for base and weld metal.

In general, the strength and ductility
of the weld materials are relatable to
the hardness—Tables 4 to 6.

Cyclic Stress-Strain Behavior

The cyclic stress-strain curves ob-
tained for each material are shown
with each of the respective tensile
stress-strain curves in Figs. 8 to 10. All
A36 and A514 weld materials (except
A36-BM and A36-WM(2P)) show vary-
ing degrees of cyclic softening, while
the 5083-0 weld materials show a large
amount of cyclic hardening. The cyclic
yield strength (o) was obtained by
curve fitting o as a function of the
Brinell hardness number (BHN):

oy = —184 4+ 0331 BHN (ksi) (7)

Equation 7 is valid for the A36 and
A514 materials but does not apply to
the 5083-0 materials,

Fatigue Behavior

The fatigue properties for the A36,
A514, and 5083-0 weld materials are
given in Tables 7 to 9. The fatigue
strength coefficient (o]) and the fa-
tigue strength  exponent (b) were
calculated as a function of reversals to
failure using a least-squares fit to the
measured elastic strain data. The fa-
tigue ductility coefficients (e ;) and
the fatigue ductility exponent (¢} were
obtained in a similar manner using the
plastic strain data and the number of
reversals to failure. Excellent agree-
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ment  was  obtained between the WM(1P), but always lies below the

experimental data and equation (1) as
seen in Figs. 11 to 13,

For the A36 weld materials (Fig. 11),
AJ6-WM(1P) has the highest fatigue
resistance for all lives. The curve of
A36-WM(2P) is similar to that of A36-

former. For A36-BM and A36-HAZ, the
higher hardness materials have the
higher fatigue resistance at long lives
but a lower fatigue resistance at short
lives. The A36-BM is inferior to the
other materials in the A36 group, and

Strain, €

Fig. 9—Monotonic and cyclic stress—strain response for A574 stee/

the difference in fatigue resistance
between A36-BM and the others
becomes largest at long lives.

For the A514 weld materials (Fig. 12),
the relationship between hardness and
fatigue resistance mentioned for A36-
BM and A36-HAZ is also valid for
A574-BM and A5T4-HAZ.

As seenin Fig. 12, A514-BM is slight-
ly superior at short lives, A514-WM(2P)
is slightly superior at intermediate
lives, and A514-HAZ is significantly
superior at long lives. A514-WM(1P) is
always inferior at the lives greater than
about 200 reversals.

For the A514 weld materials (Fig. 12),
13), the 5183-WM is very similar in
fatigue behavior to the 5083-0 base
metal with the base metal producing
slightly greater fatigue resistance at the
shorter fives. This result is not surpris-
ing considering the similar hardness
(Table 6) of the two materials.

Mean Stress Relaxation Behavior Test
Resuits

The results of a typical mean stress
test, conducted at a positive mean
strain, are shown in Fig. 14, The lines
were obtained by {east-squares fit of
the data to conform to the power
function of equation (4). The relaxa-
tion exponent (k) was calculated by a
least-squares fit for mean stress relaxa-
tion test data for the A36, A514, and
5083-0 weld materials and are listed in
Table 10.

As mentioned in previous stud-
ies, = it was observed that the strain
amplitude influenced the cyclic mean
stress relaxation behavior significantly,
while mean strain did not. The relaxa-

Table 7—Cyclic and Fatigue Properties of Base, Weld, and Heat-Aifected Materials for ASTM A514F/E110 Welds

Material

Cyclic yield strength, 0.2% offset, ksi (MPa)

Cyclic strain hardening exponent, n’
Cyclic strength coefficient, K’, ksi (MPa,

Fatigue strength coefficient, o, ksi {MPa)

Fatigue ductility coefficient, €/
Fatigue strength exponent, b

Fatigue ductility exponent, ¢
Transition fatigue life, 2N,,, reversals

————

A514-BM AS514-HAZ

87.6 (604) 136 (938)

0.091 0.103
158 (1090) 256 (1765)
189 (1305) 290 (2000)

0.975 0.783

—0.079 -0.087

—0.699 —0.713

3,461 1,138

ETTO-WM(1P) E110-WM(2P)

94.2 (6509 87.4 (603)
0.177 0.166
=293 (2021) 242 (1670)
274 (1890) 204 (1408)
0.648 0.595
0115 ~0.079
—0.734 ~0.590
1.536 6,448
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Table 8—Cyclic and Fatigue Properties of Base, Weld, and Heat-Affected Materials for ASTM A36/E605-3 Welds

Material

Cyclic yield strength, 0.2% offset, ksi (MPa)

Cyclic strain hardening exponent, n’

Cyclic strength coefficient, K/, ksi {(MPa)

Fatigue strength coefficient, o, ksi (M
Fatigue ductility coefficient, €/
Fatigue strength exponent, b

Fatigue ductility exponent, ¢
Transition fatigue life, 2N, reversals

Pa)

A36-BM A36-HAZ
336 (232) 58.2 (402)
0.249 0.215
159 (1097) 216 (1490)
147 (1014) 105 (724)
0.271 0.218
0132 ~0.066
—0.451 ~0.492
200,000 13,234

E60S-3-WM(1P) E60S-3-WM (2P)

55.8 (385) 52.6 (363)
0.155 0.197
146 (1007) 179 (1235)
131 (904) 149 (1028)
0.607 0.602
—-0.075 ~0.090
—0.548 —0.567
28,022 19,259

tion exponent (k) is plotted in Fig. 15
as a function of the strain amplitude
(e,) for all the materials studied.

From Fig. 15, it can be seen that the
A36 weld materials have the greatest
relaxation rate while the A514 weld
materials have the least for a given
strain amplitude. The relaxation be-
havior of the 5183-WM is interme-
diate. Materials with the higher transi-
tion fatigue lives, A36 weld materials
(Tables 7 to 9), have the greater relaxa-
tion rates, while the materials with the
shorter transition fatigue lives, A514
and 5183 weld materials, have the
lower relaxation rates at a given strain
amplitude.

Discussion

Variation of Weld Materials Properties with
Hardness

The relationships between hardness
and mechanical and fatigue properties
—equation (2)~have been established
by Landgraf* and Morrow et al* for
steels. A comparison of these known
relationships between hardness and
fatigue properties and the test resuits
for A36 and A514 BM’s, WM’s, and
HAZ’s was made.

Table 9—Cyclic and Fatigue Properties of Base and Weld Materials for ASTM 5083-0/5183

Aluminum Welds

Material

Cyclic yield strength, 0.2% offset, ksi (MPa)

Cyclic strain hardening exponent, n’

Cyctlic strength coefficient, K, ksi (MPa)
Fatigue strength coefficient, o, ksi (MPa)

Fatigue ductility coefficient, €1
Fatigue strength exponent, b

Fatigue ductility exponent, ¢
Transition fatigue life, 2N, reversals

5083-BM 5183-WM
42 (290) 39 (269)
0.114 0.072
84 (580) 73.5 (507)
103 (711) 92.5 (638)
0.405 0.581
—-0.122 ~0.107
—0.692 —-0.890
640 205

Landgraf*® found a linear relation-
ship between the transition fatigue life
{(2N¢.) and hardness which is shown by
the solid line in Fig. 16. Both A36 and
A514 weld materials conform to the
linear relationship which is shown as a
dashed extension of the solid line. The
true fracture strength (o) has been
found to be equal to half the Brinell
hardness number (BHN) for steels™ for
low and intermediate hardnesses as
shown in Fig. 17. The o, for the A36
and A514 weld materials was also
found to obey this relationship (Fig.
17).

Values of the true fracture ductility

(e ;) were found to decrease with
increases in hardness (Fig. 18). A single
relationship, however, was not found
for either the A36 and A514 weld mate-
rials or the steels previously investi-
gated by Landgraf® (shown as dashed
lines in Fig. 18). The monotonic strain
harding exponent (n), also shown in
Fig. 18, was found to be a parabolic
function of hardness with its minimum
occurring at 400 BHN,

The cyclic strain hardening expo-
nent (n’) was plotted vs. hardness (Fig.
19), and was found to decrease as the
hardness increased for the A36 and
A514 weld materials. No trend was

[ T T T T E 3
1 A514-BM @ 1
E60S-3-WM (2P) & )
o' _ o™ E
= E o 3
o [ B w ~
v B 1 - ~EHO-WM (2P) & :
- — 1 @ 4
g : T
3 = L
E [ a
£ , & 0°? :
_2 g
— / o -3~ A = - -
< 107 8AZ6-HAZ /"EBOS-3-WM [iP) i - - /A5I4 HAZ ®
£ — b S F
2 F 5 I
(2] 4
- 3 .
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Fig. 11=Strain-fife fatigue behavior of A36 steel weld matenals
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Fig. 12—Strain-life fatigue behavior of A514 steel weld materials




reported by Landgraf, however, for
higher hardness steels as shown by the
steel scatter band in Fig. 19,

Based on hardness, the monotonic
and cyclic properties (n, o, € (, and
r) may be estimated. The fatigue
strength (of) and ductility (e {) coeffi-
cients may be approximated by their
monotonic counterparts.™

- T R T 1
L
-1 ™ A
10 — 3
B
° 4
o 5083-0-BM
L .2
g .
= ]
2 -
<
c B 4 5183 -WM
° .
(%3] _3 .
10 =
- w
3 1 1 | | 1 17 .
10 10° 10° 0* 10° 108 10 10
Reversals To Failure, 2Ny

Fig. 13=Strain-life fatigue behavior of 5083-0 aluminum weld materials

The cyclic strength coefficient is:*

o (10)

The fatigue ductility (¢) and strength
(b) exponents are also functions of
hardness for the A36 and A514 weld
materials. The fatigue strength expo-
nent increases as hardness increases as

ness increases. These trends are con-
sistent with the relationship:2*
b

C

(1

n’

and the observed decrease in n’ with
increasing hardness shown in Fig. 19.

Factors Influencing Mean Stress Relaxation
Behavior

The mean stress relaxation behavior
of a material has been found to be a
function of the strain  amplitude
(€,).2% Measured mean stress re-
laxation  exponents—equation  (4)—
which determine the relaxation rate
and mean stress fatigue damage
behavior were plotted as a function of
hardness in Fig. 21. Here it can be seen
that k depends on hardness for the
A514 weld materials but not for the
A36  weld materials. However, by
dividing the plastic strain amplitude
(determined from the total strain
amplitude) by the elastic modulus (F)
and transition strain { € ) of the mate-
rial, a linear relationship shown in Fig.
22 was obtained which appears to be

valid for all the materials studied:*’
Aey/?2

K = 4625 (ksi)— —E =

E €

tr

The transition strain (€ ,,) is half the
strain amplitude (e,) which corre-
sponds to 2N, .
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Table 10—Cyclic Mean Stress Relaxation Exponent (k) for A514, A36, and 5083-0 Base and Weld Materials®'

€,

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0050

A514
BM HAZ WM(IP)  WM2P)
0.009 0.007 0.009 0.012
0.015) (0.008) 0.016) (0.011)
0.015 0.007 0.018 0.016
(0.025) (0.008) 0.017) 0.011)
0.023 0.010 0.016 0.019
(0.027) (0.013) (0.019) (0.026)
0.038 0.013 0.026 0.030
(0.046) (0.017) (0.035) (0.037)
0.062 0.021 0.046 0.041
(0.079) ©.023) (0.043) (0.060)
0.084 0.029 0.073 0.063
(0.116) (0.034) (0.066) (0.076)
0.152 0.048 0.100 0.087
(0.150) (0.082) {0.100)

A36
BM HAZ WM(TP)  WM(2P)

0.012 0.030 0.030 0.028
(0.001) (0.030) (0.031) (0.032)
0.068 0.061 0.065 0.075
(0.046) (0.060) (0.065) (0.063)
0.122 0.122 0.107 0.1571
(0.106) (0.127) (0.100) (0.127)
0.221 0.213 0.180 0.256
(0.191) (0.209) (0.166) (0.180)
0.273 0.282 0.283 0.337
(0.223) (0.257) (0.196) (0.198)
0.351 0.349 0.359 0.457
(0.232) (0.283) (0.267) (0.258)

50830
BM WM™

0

0.032

0.090

0.256

@1 The number in parentheses were tests conducted under a negative mean strain (€ ).

negative.

®Actual strain amplitudes (€ ) were 0.0011, 0.0020, 0.0026, 0.0030.

The mean strains used were 0.004 (A514), 0.005 (A36), and 0.003 (5083-0). All values of k are
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