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ABSTRACT 
This paper presents a theory of shot-induced material property deviations near the 
component surface.  Our analysis shows that, with shot peening being the common 
cause, there exists a universal scaling law among seemingly unrelated material 
property deviations under varying peening conditions.  The main contribution of this 
paper is to show the existence and utility of the scaling law.  We explicitly present 
scaling behaviors of several material property deviations under varying Almen 
intensities, and validate the predicted scaling relations against experimental data.  
Assuming the scaling law holds, we also show how to use it as a tool to control 
peening processes, by predicting, e.g., residual stress profiles at varying Almen 
intensities.  The scaling law is also found useful in assuring consistency among 
nondestructive characterization measurements. 
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INTRODUCTION 
The physical properties of shot peened surfaces exhibit deviations from their bulk 
values.  Depth profiles of these property deviations are functions of material and 
depend on the conditions of the peening process.  To achieve target material states, 
e.g. compressive residual stress for surface protection, the peening process must be 
controlled with care.  Use of Almen strips is the standard method of process control 
that ensures consistency and repeatability of the peening process.  However, 
conventionally, it still is a task at the outset to determine, by repeated trials, how 
much shot peening to perform or to what Almen intensity, on the case-by-case basis.  
It is desirable to have a methodology that can predict necessary peening conditions 
from the knowledge on one material condition to another.  Actually, the utility of the 
Almen test suggests existence of certain universality among material responses 
against a given peening process.  Indeed, this paper expands this notion of 
universality, and shows that there exists a scaling law which provides the aforesaid 
universality among seemingly unrelated material property deviations and among 
different peening conditions. 
 
EXISTANCE OF SCALING  
Working assumptions 
At the outset of the shot peening process, the surface will yield, experiencing plastic 
deformation.  The plastic stretching of the surface layer is counteracted elastically by 
the cohesion to the bulk of the material, causing the layer material to experience 
compressive residual stress.  We assume that, eventually, the plastic deformation of 



 

 

the surface layer saturates, i.e. the hardened surface will stop yielding.1  After that, 
the surface reacts to the subsequent projected shot only elastically, in which case the 
strain induced by a single shot (in the saturated sample) can be calculated by the use 
of the Hertzian contact theory (H. Hertz, 1881) and energy conservation during the 
elastic collision.2 
 
Scaling parameter 
When a single spherical shot of radius R strikes the saturated free surface of a half-
space, the maximum elastic strain )1(

iju  as a function of depth z takes the form: 
( ) ( ) ( )azuRazu ijij

)1()1( ~= , where ( )ζ)1(~
iju  is a universal function of the argument ζ (H. 

Hertz, 1881; L. Landau and E. Lifshitz, 1959), and the scaling parameter a  is the 
characteristic contact radius between the shot and the peened surface given by  
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Here ρ and V are the shot density and velocity, while E1,2 and 2,1ν  are Young’s moduli 
and Poisson’s ratios of the shot and the half-space materials, respectively. It is 
important that the contact radius a  depends on the material and process parameters 
while the function ( )azuij

)1(~  is independent of these parameters. 

Given the elastic strain ( )zuij
)1( , it is conceivable to compute the plastic strain ( )zu pl

ij , 
either from empirical nonlinear stress-strain curves, or by any appropriate choice of 
elasticity-plasticity theories (e.g. J. Li, et al., 1991).  Since one would perform the 
calculation at each depth value z, ( )zu pl

ij  will take the form 

( ) ( ) ( )azuRazu pl
ij

pl
ij /~/ ⋅= γ ,     (2) 

where 1=γ  because it should vanish equally as ( )zuij
)1(  for small a, and where ( )ζpl

iju~  

is another function but decaying as ( )ζ)1(~
iju  does.  The function ( )ζpl

iju~  is less 

universal than ( )ζ)1(~
iju  because it generally depends on the plastic property of the 

material in question.  As shown below, Equation (2) explains certain scaling 
behaviors among a given material, and will allow us to relate stress profiles at 
different peening intensities. 
 
MANIFISTATION OF SCALING 
Strip Bending 
The contact radius a  in Eq. (1) sets the scale of the problem, and thus is 
fundamentally important.  However, it is sometimes an inconvenient parameter to use 
in applications because the shot velocity is usually unknown.  Measurable quantities 

                                            
1 Practically, this saturation could be achieved after the first impact.  Numerical calculations show that 
the “residual stress field is mainly influenced by the first impact” (D. Kirk and R. Hollyoak, 1999). 
2 Typical values of shot velocity are much smaller then the speed of sound in metals.  Therefore, the 
collision between the shot and surface can be considered as an adiabatic process, and energy transfer 
to sound waves is negligible. 



 

 

such as plate deflections d and radii of curvature r are more desirable parameters to 
describe the consequence of the universal scaling law (e.g. Eq. (2)) in physical 
properties.  Here, we first establish the relationship between the contact radius a  and 
the deflection d for a peened thin plate.  Consider a thin plate (strip) of a thickness h, 
the length Lx, and width Ly.  When yx LLh ,<< , the plate deflection αd and the radius of 

curvature αr  are related via ααα dLr 82≈  for each direction, α=x or y.  When the plate 
is shot peened, it experiences bending, leading to the bending strain )(zu b

ij .  For a 

thin plate, this strain is a linear function of the depth: ( )( )hzrhzub 212/)( −= ααα  (L. 
Landau and E. Lifshitz, 1959).  For the peened plate, the strain )(zub

αα  is a 
superposition of plastic and residual elastic strains.  Therefore, 

bplel uuu αααααα +−= ,      (3) 

where ( ) ( )( )azuRau pl /~/ α
αα ⋅= .  To find )(zu el

zz , we use the standard relation between 
stress ijτ and strain el

iju and impose the equation 0=zzτ , which holds near the free 

surface, leading to the result ( ) ( )νν −+−= 1el
yy

el
xx

el
zz uuu . Now, we insert these relations 

to the elastic energy F of a bent strip 
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We can minimize the energy F with respect to the deflections αd  explicitly, assuming 
that ( )zu pl

αα  decays sufficiently fast so that ah  can be taken infinity.  We find that 

( ) ( )222 RhLad αα ∝ ,      (5) 

thus establishing the relationship of the radius a  to the deflection d and/or the radius 
of curvature r that can be readily measured. Equation (5) is a corollary of the 
universality represented by Eq. (2). 
The dependence of d (and r) on the strip dimensions L and h has been validated by 
direct experiments using Almen strips of two different thicknesses (A and N series 
strips) cut to different lengths which were shot peened at different pressures.  Table 1 
below shows that, in agreement with the theory, the product 2dh  is independent, 
within the errors of several percents, of the plate thickness h and the peening 
intensity characterized by the pressure or Almen deflection d.  Similar data 

  Small shots Large shots 
Pressure, 
kPa (psi) 

dA 
(A) 

dN 
(A) 2

2

NN

AA

hd
hd  

dA 
(A) 

dN 
(A) 2

2

NN

AA

hd
hd

172 (25) 2.9 7.4 1.06 4.9 12.9 1.03 
276 (40) 4.0 10.8 1.00 7.4 18.6 1.08 
379 (55) 5.5 14.4 1.03 9.1 23.4 1.05 
483 (70) 6.1 16.4 1.01 10.5 26.9 1.05 
586 (85) 6.7 17.9 1.01 12 29.7 1.09 
 

Table 1:  Almen intensity dA , 
dN, and invariant ratio 
( ) ( )22

NNAA hdhd  as a function of 
pressure.  Strip thickness: 
hA=1.30 mm, hN = 0.79 mm.  
Shot radius: R=0.28 to 
0.43 mm for small shots, and 
R=0.84 to 1.17 mm for large 
shots. 



 

 

demonstrates that the radius of curvature dLr 82≈ is independent of length L, i.e. 
deflection 2Ld ∝ . 

Next, suppose a component is given, for which Equation (5) may not apply directly 
because it may not bend after peening as a thin plate.  To proceed, we relate the 
scaling law of the component properties to the corresponding Almen strip deflections.  
Equations (1) and (5) provide us with the link if the Almen strip and component 
deformations are caused by common shot peening.  Let us consider two different 
peening intensities “1” and “2” using the same type of shots, quantitatively 
characterized by the Almen strip deflections 1d  and 2d .  À la Eq. (2), the scaling laws 
of the Almen strip and the component are dictated by the respective scaling 
parameters Aa 2,1 and ca 2,1  at the two intensities.  It is easy to see that 

( ) ( )2
12

2
1212

ccAA aaaadd == ,    (6) 

where the first and second equalities follow Eqs. (5) and (1), respectively. 
 
Cold work 
Shot-induced cold work is driven by the plastic deformation, namely, cold work is in 
principle calculable from the plastic deformation at each depth z.  Therefore, it is 
reasonable to write the cold work profile, after Eq. (2), as 

( ) ( ) ( )azwRazw /~/ ⋅= ,     (7) 

where ( )ζw~  is yet another scaling function.  Published data for Waspaloy samples 
peened at four different Almen intensities (M. Blodgett and P. Nagy, 2004) have been 
used to verify Eqs. (6) and (7).  The experimental data are in good agreement with 
theoretical prediction (Fig. 1a, b), namely all the cold work profiles can be scaled to a 
single profile function. 
 
Stress 
As presented above, we can readily calculate the residual elastic strain (and stress) 
for thin plates, thanks to the thin-plate approximation that limits the depth profile of 
the bending induced strain )(zub

αα  to be at most linear in the depth z.  The 
calculations of the function )(zub

αα for thick plates and complex geometry components 
are involved and hence outside the scope of this publication.  Here, we instead 
proceed by making the following assumptions for large and thick plates, namely we 
assume that the affected surface layer does not bend for small values of stress 
because the host material prevents it from bending. Under this assumption, )(zub

αα  is 
negligibly small and hence we have plel uu αααα −= , allowing us to apply the scaling law to 
experimental stress data.  The Waspaloy residual stress data (M. Blodgett and P. 
Nagy, 2004) plotted in Fig. 1(c),(d) support the expected scaling behaviors for small 
values of stress.  Similar results hold for data from the IN100 samples. 



 

 

Impedance signals of eddy current measurements 
Earlier (Y. Shen, et al., 2007), we presented near-surface electrical property 
measurements, by the eddy current technique, on a series of Inconel 718 plates shot 
peened at various pressures.  The sensor coils were placed over the shot-peened 
surfaces, yielding complex-valued impedance data.  We have devised a data-
processing procedure to extract so-called vertical-component signals that are free of 
instrumentation artifacts and directly related to surface conductivity deviations.  The 
resulting V-component data are reproduced in Fig 2(a) as a function of frequency f. 
Assuming that the conductivity deviation of the shot peened surface is a linear 
function of stress and cold work, the theory predicts that the vertical component 
signals exhibit the scaling behavior, ( ) ( )fdVdfV ~⋅∝ .  Figure 2(b) presents the scaled 
experimental stress data that show the predicted scaling behavior approximately. 
 
SUMMARY AND CONCLUSION 
A theory of shot-induced material property deviations near the material surface has 
been presented.  Experimental data support the assumption that strain and stress as 
a function of depth in the shot-peened Almen strips has a universal function form 
depicted by Eqs. (2) and (3).  The universality by way of scaling has been confirmed 
for the cold work in a nickel-base superalloy (Waspaloy).  Residual stress and eddy 
current data exhibit scaling behaviors less exactly than the cold work data do.  The 
origin of the deviation from scaling is unknown to date, but may be attributable to 
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Figure 1:  Cold work and stress depth profiles of Waspaloy at four Almen intensities 
iA with the strip deflections id , i=4,8,12,16; (a) and (c) for the cold work and stress 
data (after M. Blodgett and P. Nagy, 2004); (b) and (d) for the scaled cold work 

iddw 16  and the scaled stress idd16τ  as functions of scaled depth iddz 16 . 
 



 

 

bending.  The scaling law could be used as a tool to control peening processes, by 
predicting cold work profile and to some extent the residual stress profile at varying 
Almen intensities.  It is also useful in assuring consistency of eddy current 
measurement, which is currently being investigated with regards to its potential as a 
nondestructive technique for measuring surface and sub-surface material conditions 
(e.g. residual stresses) in aerospace materials such as nickel-base superalloys. 
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Figure 2: (a) The V-component data as a function of frequency.  (b) The scaled V-
component data icomp ddV /2.9⋅  as a function of scaled frequency 2.9/ dfdi .  (150 psi 
etc. indicate the shot-peening pressures where 1psi = 6.90kPa.) 
 


