Influence of Shot Peening on the Residual Stresses in Spring Steel Plate

A.T. DeLitizia

Wheelabrator-Frye, A Signal Company Mishawaka, Indiana, U.S.A.

ABSTRACT

The influence of six different SAE cast steel shot sizes (S-280, S-330, S-390, S-460, S-550, and S-660), measured under constant flow rate of 454 kilograms per minute and the travel speed of the work piece through the blast adjusted to obtain 98 percent coverage in one pass are reviewed as to their induced residual stresses on SAE 5160 leaf spring coupons.

Ten coupons were shot peened with each shot size in the intensity range of 5C to 14C. Random coupons were then checked for residual stress by x-ray diffraction analysis to a depth of .350 mm. Curves were then plotted showing residual stress versus depth below the surface for each coupon. A comparison can then be made of coupons for each shot size and shot intensity as to the residual stresses.

The data was then analyzed mathematically to confirm the conclusions inferred by the composite curves. Cubic parabola regression equations are used to closely predict the measured stress value. The regression curves, plotted from the calculated stress values are compared to the measured stress for each coupon.

KEYWORDS

Shot peening; steel; residual stress; x-ray diffraction; regression equations; fatigue.

INTRODUCTION

In the manufacture of suspension leaf springs shot peening is vital for improving their fatigue life. The benefits of shot peening both in free state and pre-stressed conditions are well documented and have been substantially developed. Specifications on leaf spring manufacture now require a compressive residual stress at a specific depth below the surface. In order to correlate the needed results with shot peening parameters, a study was undertaken whereby shot sizes and their resulting intensities were compared. Through the methods of residual stress measurement by x-ray diffraction, a "fingerprint" of these compressive stresses can be incorporated into the control of the shot peening process. Prediction of results was also investigated by regression equations to arrive at a model whereby mathematical equations can also be incorporated at the early design stages. The experimental results and comparisons with mathematical models were compared on the basis of accuracy and predictability.

EXPERIMENTAL PROCEDURES

1. Material

The materials involved in the experiment were hot-rolled spring steel plate 7 mm thickness, 70 mm width, and 450 mm length. The weight percent of chemical composition is listed in Table 1. Specimens were normalized, machined, austenitized, quenched and tempered to between 44 and 48 Rockwell C. Free height was 33 mm.

SAE NO.	С	Mn	Р	S	Si	. Cr
5160	0.56-0.64	0.75-1.00	.035	.040	0.15-0.36	0.70-0.90

TABLE 1 CHEMICAL COMPOSITION (WEIGHT PERCENT)

2. SHOT PEENING

Material was prestressed to $6,300 \text{ Kg/CM}^2(90,000 \text{ psi})$ and shot peened with a centrifugal wheel to 100 percent coverage. Coverage was measured by the polished strip method using a planimeter to quantitatively determine travel speeds. Flow rate was set for a constant 454 Kgs/min. and wheel speed to a constant 2250 r.p.m. For all tests, Almen intensity is shown in Table 2. Shot for all tests met SAE standards J827 and J444a with hardness range of 44 to 50 Rc.

TABLE 2 INTENSITY

S-280	S-330	<u>s</u> -390	S-460	S-550	S-660		
5C	6C	7.5C	9C	11.5C	14C		

3. X-RAY DIFFRACTION

X-ray diffraction residual stress measurements were made in the longitudinal direction to the springs and in the center of the concave specimens.

Material was removed for subsurface measurement by electro-polishing in a sulphuric - phosphoric - chromic acid electrolyte minimizing possible alteration of the subsurface residual stress distribution as a result of material removal. Readings were taken to a depth of .350 mm.

4. REGRESSION EQUATIONS

The stress was first plotted vs. depth below the surface for each specimen. An initial regression model of the form: $\mathcal{O}=a+by+cy^2$ was chosen where σ equals stress, y, the depth below the surface, and a, b, & c are arbitrary constants.

The method used to estimate these arbitrary constants is called the method of least squares. Simply stated, a matrix equation is set up of the form: $y f = \sigma$

The lower upper decomposition method was used in the calculations which is extremely useful for computerized analysis. After several sets of data were analyzed, it was found that a better fit could be obtained by including the depth cubed term in the regression equation. The equation then took the form: $\sigma=a+by+cy^2+cy^3$.

The regression equations were then developed. Plots from the calculated stress values were then compared to the X-ray diffraction readings. See Figures 1 to 6.

5. CONCLUSIONS

- 1) The regression equations closely predict the stress values and can be developed to reduce X-ray diffraction measurements.
- 2) A pattern exists which indicates that stresses are deeper into the part with larger shot sizes and appears to maximize with S-550.

3)	The camp	posite curve	s drawn	by the	eyeball	of aver	age stress
	method i	is similar t	o those	using t	the regre	ession m	ethod.

TEST RESULTS

Shot Size (MM)	S-2 (1.	280 .1)	S-3 (1.	30 32)	5-39 (1.56	90 5)	S-46 (1.84	58 1)	S-5 (2.)	50 2)	S-66 (2.6	50 54)
Stress (-) (MPa) Depth (MM)	Meas.	ca1.	Meas	Cal.	Meas.	വ.	Meas.	Cal.	Meas	Cal.	Meas.	Cal.
(1944) 0 .025 .05 .075 .10 .125 .150 .175 .200 .225 .250 .275	580 738 794 856 904 952 938 1021 938 897 856 731	589 704 800 869 924 952 966 959 938 897 849 780	538 621 710 773 849 828 869 987 904 938 911 869	540 628 704 766 821 869 904 925 931 925 931 925 904 869	593 656 773 828 869 911 897 932 932 966 938 932	590 683 752 814 863 897 925 938 945 945 938 925	573 704 800 849 876 918 945 966 897 925 938 959	594 697 780 842 883 918 938 945 952 952 952 945 938	580 794 849 883 931 952 1000 1035 1076 1014 988 959	614 731 828 897 952 988 1014 1021 1007 994 973	455 656 745 787 862 814 945 849 856 869 890 849	504 621 711 780 835 869 890 897 897 897 890 876 869
.300	718	704 671	828	814 745	911 976	904	1000	938 938	897 994	952 937	938 867	856 856
.325	531	524	676	656	849	856	918	912	904	917	856	856

. . .

