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ABSTRACT

The paper gives general steps for dynamic nonlinearity to
shot peening mechanics. Three-dimensional constitutive material
law expressed in stress invariants 1s used along with the
nonlinear analysis based on the concept of initial stress.
Residual stresses can be calculated using information in Gauss
integration points. The corresponding shakedown modes can be
interpreted as those which as state of equilibrium is no longer
possible. The final results obtained the shakedown diagrams

plotted in three dimensions.
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INTRODUCTION

The work is concerned with the development of Three
dimensional finite element analysis which cope with compex target
geometry and allows for dynamic loading due to an impinging shot.
The problem is envisaged to embrace a process of multiple
indentation which covers the surface of the target progressively,
thus allaowing for shakedown of each spot due to repeated impact.

For simplicity, the shot is assumed rigid and undeformable
while the target material receives indentations. Low and high
velocity ranges have been considered together with the contact
time. The shot velocity ranges come from the data available from
a series of tests carried out by the author. These have been
simulated in order to process specific results.
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It is essential to enlarge upon the basic criterion. The
rigid steel shot is assumed to strike, with a gradually
increasing load, on the steel target plate. This increasing load
is imposed on each surface element, one at a time. The patch load
in effect acts, during loading and unloading, on each surface
element, exciting all the other elements through the conductivity
model which links all the elements together. The second loading
is then applied on the adjacent surface element, but this time
all the residual displacements and residual stresses from the
previous impact are allowed for. Therefore, the response of the
target will be different. By storing and updating the state of
the target the emmulative result is then plotted in a three-
dimensional space. The process 1is repeated until the whole
surface is covered more than once, so that each spot is loaded
several times, the number of times depending upon the duration of
the process, subsequently, the loading cycles and the surface

target is said to shakedown.

STEPS FOR NONLINEARITY ANALYSIS
The dynamic equilibrium conditions [1-8] at the nodes of the

descritized system of target elements, at a given time t, are
agiven bv
= - <

[Mli(t) + [cli(t) + [K]u(t) = R(t) (1)

where [M] = mass matrix,
u = vectors of displacement,
R = vectors of load,

[Cl, K] damping and stiffness matrices.

These equations are supplemented with a system of initial
conditions. In non-linear problems, the non-linear effects in the
element stiffness matrix may be due to either large displacement
effects or material-yielding behaviour, or a combination of both.
In the present case of the target the non-linear stiffness
effects are restricted to those related to material yielding.
These matrices are dependent on the current displacement of

target and its previous loading history.
The equation of motion may be written in increment form with
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modified [C] and ([K]
[(MI{U(t)} + [Cul{U(E)} + [Ral{U(t)} = {R(t)} + {P(L)} (2)

where {P(t)} is the initial load = {[aC]*{U(t)}+[aK]*U(t)}}
(* indicates time 0 = t).

Solution at t + at
[M]{T(t+at) }+[Cal{U(t+at) }+[Ky] {AR(t+At) }+{aP(t+at)} (3)
aAP(t+at) represents the non-linearity during time increment
at and is determined by interaction using the stress
approach.
{o} = [Drl({&}-{&})+{o} (4)

The constitutive law is used with the initial stress and constant

stiffness approaches throughout the non-linear and the dynamic

iteration. For the iteration

{U(t+at) }; = [RKal’. {Rpor(t+at)} (5)
The strains are determined using
{e(t+at) }=[B]{U(t+at) | (6)

where [B] is the strain displacement. The stresses are computed
as

{o(t+at)}; = [Drl{e(t+at)}; +{o,(t+at)}iy (7)
where {o,(t+at)} is the total initial stress at the end of each
iteration. All calculations for stresses and strains are
performed at the Gauss points of all elements. The initial stress
vector is

{oo(t+at) }; = £{e(t+at)}; =[Dr]{e(t+at) kL (8)

Using the principle of virtual work, the change of equilibrium
and nodal loads {aP(t+at)}; are calculated as

{AP(t+At) bmor = §a™' Ju™ §u™! [BIT{aP(t+at)}i & 4, 4;
O,(t) = {o,(t+at)}; = 0 (9)
where d;, d,, d; are the local co-ordinates.
The integration is performed numerically at the Gauss points.
Effective load vector P(t) is given by
{aP(t+at)gor = —[a0(t),1({U(t+at)}; * {U(E)})
= - [aC(t+at);{U(t+at) K[aK(t) ({U(t+at) }-{U(t) })
= = [AR(t+at){U(t+at) } (10)



Von Mises criterion is used and together with transitional factor
(Fig. 1) f* form the basis of the plastic states such that
oy(t) - o.(t)

o(t+at);~o(t+at)y,

The elasto-plastic stress increment will be

{a0;} = [Dlg{o(t+at), (1-f*p){ac} (12)
If o(t+at); < o, (t), it is an elastic limit and the process is
repeated. The equivalent stress is calculated from the current
stress state. Where stresses are drifted they are corrected from

the equivalent stress-strain curve.

The residual load vector is calculated as

{R} = {P;} = [, [BlTo(t+at); d vol (13)

SHAKEDOWN ANALYSIS

The shakedown load factor is determined using again a
piecewise linearized convex yield surface in the dynamic finite
element displacement <formulation. The constitutive low is
maintained.

When the load F, are applied on an elastic perfectly plastic
steel target plate, it will shakedown if time independent,
residual stresses o can be found, such that

flop(X,t) + 0g] € 0
for every X and t F(o)< 0 being the yield condition and o, (X,t)
is the linear elastic response of the plate to F;, where X, t are
spatial coordinates of the loading to be represented by the n-

loading parameter confined in a prescribed region denoted by
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£(F,)=0 in the load space. The loading domain can be represented
by a unit loading region £(F;)=0 times a, for proportional loading
case. The actual loading history F, can pass through any point
inside the loading domain £f(F;)=0, as a prescribed function of
time. The shakedown problem is to find the maximum value of a,
when the time function of the loading is known subject to the
condition that

flaoqa(X,t) + o) £ 0

The above dynamic analysis is carried out with prescribed
initial conditions such that the response becomes periodic due to
external loading F,. The stress response vectors are maximised

with respect to the assumed linearized yield places.

RESULTS AND DISCUSSION

A simple model of a steel target plate, Fig.2 is chosen for
dynamic indentation studies when it 1s subjected to steel
spherical shots with wide range of impacting speeds. A
theoretical solution which endeavours to model the shot peening
which discussed elsewhere [9-11] has been associated with short
and long time dependent condition, as mentioned above. Before
giving an explanation to the results produced from the three-
dimensional finite element analysis, it is essential to dilate
upon the basic criterion. The rigid steel shot is assumed to
strike with a gradually increasing load, the steel target plate.

Beyond the elastic limit, plastic flow occurs in the target

plate, resulting in a permanent indentation.
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During that state - plastic deformation - when residual
stresses occur in the target plate, they inhibit further plastic
flow when the same plate is subjected to repeated impact of the
same spot. After a few cycles, a steady-state is reached when the
deformation is entirely elastic. This process as given above is
known as the shakedown and the maximum load under which it occurs
is the limit of the shakedown. The condition for the shakedown is
maintained such that the systems of residual stresses together
with the normal stresses due to loads do not exceed the yield
criterion.

Figures 3-5, shows results of the shots with 30, 40 and 100
m/sec, respectively. The same spot is chosen for all these single
impacts with these variable velocities. The reductions of the
curvatures from the bottom in each indicates the eventual elastic
deformation. In all cases with the increases in the number of
impacts, there is a spreading effect of the plastically deformed
regions. These regions tend to spread further beyond the rim of
indentation rather than deeper into the target plate. The plots
indicate a greater piling up of the metal at the edge of
indentation. The maximum values of hardness increase in all cases
up to 8-10 impacts.

It is interesting to note that some layers below the
indentation undergo certain amounts of softening. The only
explanation can be offered is perhaps a change in the direction
of straining and/or the recovery strains causing further plastic

deformation resulting in the reduction of hardness.
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Fig. 4: Shakedown Analysis Type 2 (40m/sec)
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ig. 5: Shakedown Anaiysis
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