SHOT PEENING FOR TUBULAR WELDED JOINTS
OF OFFSHORE STRUCTURES

S.K. Dubey V.K. Tokhi
Asst.Professor Professor
M.A.C.T., Bhopal, India.

ABSTRACT

"Welded steel tubular structures used for offshore plateforms are normally exposed
to fatigue due to stress concentration at welded joints and environmental loading.
Due to repetitive action of wave forces, fatigue cracks can develop at the welded
joints of tubular steel jacket plateforms. This paper presents the possible failure of
welded tubular joints and suggests the way of strengthening by shot peening".

1. INTRODUCTION

The stresses in tubular joints are combinations of simple stresses. There are
various aspects of failure of tubular joints such as reaching the elastic limit of
the material, the material yield strength, detection of first cracking in a tension
joint, shear failure of the overall cross section of the chord etc. It is important
in the design of a tubular joint that the joint should possess enough deformation
capacity to permit the stresses to get redistributed within the joint itself and
generally throughout the structure.

In the offshore plateforms the loading by ocean waves has often come into
consideration. Here are two important differences from the usual fatigue
situation. First, the rate of loading are slow, since ocean waves pass the
offshore structures at the rate of about 10 cycles per minute. Second, offshore
structures are immersed in corrosive medium. Fatigue cracks grow because
of tensile stresses. Corrosion of a metal is accelerated if the metal is subjected
to tensile stresses. Thus, the problem of corrosion and fatigue are combined
in the case of an offshore plateform.

1.1 Parameters of a Tubular Joint:

The general arrangement of members of an offshore structure are as shown
in fig.1. The joints are normally made by round tubes (CHS) and designated
as T, Y, K, N etc. depending on the positions of the braces. Fig. 2 shows some
of the possible tubular joints.

1.2 Geometrical Joints

\[\beta, \text{ratio} = \text{brace diameter / chord diameter} \]
\[\gamma, \text{ratio} = \text{chord radius / chord wall thickness} \]
\[\tau, \text{ratio} = \text{wall thickness of brace / wall thickness of chord} \]
Fig. 1. Major Components of an offshore platform

For tubular joints, with $\beta < 0.3$ failure occurs by punching shear and when $\beta > 0.8$, chord fails by collapse.

When β is in between 0.3 and 0.8 the failure is due to interaction of punching shear and general chord collapse. Many investigators propose tubular joints in the γ (range) of 7 to 15 and a β (range) of 0.4 to 0.7 connections with larger τ (ratios). For $\tau > 0.5$, the stresses in the brace being critical are compared to the stresses in the chord.

As a thumb rule, if ratio of τ over β does not exceed unity is considered to be a well proportioned design. When the load in the brace is in tension, compression or bending circumferentially about the chord axis the hot spot stress is at point 2 or 5 as shown in fig. 3. For bending of the brace in the plane of the axis of the chord and brace, the hot spot lies at one of the points 1, 3, 4 or 6.

1.3 Stress Concentration and Fatigue

Stress concentration refers to the condition in which high localised stresses are produced as a result of the geometry of the structural element. Fatigue failures occur at nominal stress levels lower than the yield stress of a material in areas of high local stress and the fatigue cracks propagate perpendicular to
the direction of maximum applied tensile stress into areas of low local stress and the very location is called the hot spot. Three basic stresses contribute to the development of hot spots:

1. Primary (type A) stresses are caused by axial forces and moments resulting from the combined truss and frame action of the jacket. In Fig. 3 stress at hot spot locations 1, 3, 4 and 6 are most affected by axial forces and in-plane bending moments in the braces. The regions around hot spots 2 and 5 are most affected by axial forces and circumferential moments in the braces.

2. Secondary (type B) stresses are caused by the structural details of the connection such as poor joint geometry, poor fit-up, restraint of braces caused by circumferential welds etc.

3. Secondary (type C) stresses are caused by metallurgical factors that result from faulty welding such as insufficient weld penetration, under cutting, weld porosity, varying cooling rates etc.
Fig. 3. Details of an inplane tubular joint

Fig. 4. AWS, S-N curves

1.4 AWS Fatigue Curves

S-N Curves for tubular connections were first published in 1972 by the American Welding Society (AWS) and are presented here in Fig. 4 and Table 1.
Table 1. AWS Fatigue categories

<table>
<thead>
<tr>
<th>Stress category</th>
<th>Situation</th>
<th>Kinds of stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Plain unwelded tube</td>
<td>Tension, comp, bending, reversal</td>
</tr>
<tr>
<td>B</td>
<td>Butt splices, no change in section, full penetration groove welds, ground flush and inspected by X-ray or ultrasonics</td>
<td>Tension, Comp, Bending, reversal</td>
</tr>
<tr>
<td>C</td>
<td>Butt splices, full penetration groove welds as welded</td>
<td>Tension, Comp, Bending, reversal</td>
</tr>
<tr>
<td>D'</td>
<td>Simple T, Y and K connections with full penetration tubular groove</td>
<td>Tension, Comp, Bending, reversal in branch member</td>
</tr>
<tr>
<td>E'</td>
<td>Simple T, Y and K type with partial penetration groove welds, complex tubular connections etc.</td>
<td>Tension, Comp, Bending, reversal in branch member</td>
</tr>
<tr>
<td>X</td>
<td>Main member at simple T, Y and K connection</td>
<td>Hot spot stress or strain on the outside surface of the main member at the toe of the weld joining branch member - measured in model of prototype connection</td>
</tr>
<tr>
<td>X</td>
<td>Unreinforced cone-cylinder intersection</td>
<td>Hot-spot stress at angle change</td>
</tr>
<tr>
<td>X</td>
<td>Connections whose adequacy is determined by testing an accurately scaled model</td>
<td>Worst measured hot spot strain, after shake down.</td>
</tr>
<tr>
<td>X</td>
<td>Connections whose adequacy is determined by testing an accurately scaled model</td>
<td>Worst measured hot spot strain, after shake down.</td>
</tr>
<tr>
<td>K</td>
<td>Simple K type tubular connections in which gamma ratio (R/T) of main member does not exceed 24.</td>
<td>Punching shear on shear area of main member</td>
</tr>
<tr>
<td>T</td>
<td>Simple T and Y tubular connections in which gamma ratio (R/T) of main member does not exceed 24.</td>
<td>Punching shear on shear area of main member</td>
</tr>
</tbody>
</table>

The fatigue life of a welded connection depends on many factors i.e. number and occurrence of waves causing local yielding, metallurgical behaviour of the steel, surface appearance of weld, geometrical shape of the weld etc. Over the
span of its design life the offshore structure is subject to a spectrum of cyclic
waves which produce cumulative damage and it may be estimated by
Palmgran-Miner cumulative damage rule.

\[D = \sum_{i=1}^{k} \frac{ni}{Ni} \leq 1 \]

where, \(ni = \) number of cycles within stress range interval \(i \) of the long-term stress
range distribution.

\(Ni = \) number of cycles to failure at the same stress range, derived from the S-N curve.

\(K = \) Total number of stress range intervals

\(D = \) Cumulative damage ratio

2. DISCUSSION

It may be advantageous to induce compressive residual stress in critical areas
located as hot spots in Fig. 3. of the weldments where cyclic applied tensile
stresses are expected. Further welding sequence that controls residual
stresses from welding also needs due consideration. The localised shot peening
treatment will place these surfaces in compression. The controlled shot peening
is the fact that a harder, embrittled heat affected zone will also be visually
obvious after peening. There will be shallower dimpling in the harder areas.
These areas need properly controlled shot peening. This will offer the most
effective post weld stress relief method to solve the problem of fatigue in steel
sea shore structures. Shot peening as reported by many investigators may
reduce stress corrosion and corrosion fatigue under sea water.

3. REFERENCES

Becker, J.M, Gerberich, W.W. and Bouwkamp, J.G. 1971. 'Fatigue failure of
welded tubular joints' Journal of the structural Division, ASCE, 98.

Maddox, N.R. 1975. 'A deterministic fatigue analysis for offshore plateforms'
Journal of petroleum technology, July 1975.

Mukhopadhyay,A., Itoh,Y. and Bouwkamp, J.G.1975.'Fatigue behaviour of
tubular joints in offshore structures'. Offshore technology conference
proceedings, I.

Seetharaman, D.S. Sreedhar; D.S. Ramachandra Murthy; and Madhava Rao
A.G. 1991. 'Fracture mechanics analysis of fatigue behaviour of welded tubular
joints' Journal of structural engineering, 17, (4).

Graff, W.J. 'Introduction to offshore structures. Design, fabrication, installa-
tion, Gulf Publishing Company, Houston, Texas.

mechanics modelling of offshore welded stiffened steel tubular Joints' Journal
of the Institution of Engineers (India) 76, : 141-145.