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Introduction 
Data abounds in shot peening. We have Almen arc heights, 

peening times, sieve analyses, shot weightings, image analysis values, 
air pressure variations, shot flow rates, residual stress data, etc. 
Most of this data is valuable - it cost time and money to produce - 
and it can all be stored in a readily-accessible format. Data that 
simply appears during a controlled process - such as MagnaValve 
readings during peening - would not normally need to be stored for 
subsequent analysis. Ahen  arc heights, on the other hand, should 
be stored together with associated variables such as peening time, 
shot size, shot type, air pressure, stand-off distance, feed rate, etc. 
Commercial spreadsheets (such as Microsoft's Excel) are useful for 
limited data storage but a proper database programme (such as 
Microsoft's Access) is needed for large data storage procedures. 
Most data analysis programs can input data straight from either a 
spreadsheet or a database. 

Vast amounts of data can therefore be accumulated and stored, 
but it 1s aii useiess uniess it can be anaiysed. 'Ths anaiysis must have 
specific objectives. These objectives may include: 

Presenting data in a palatable format, 
Determining required parameters - such as time to achieve a 
spcci!led Fimer, 21-c height, 
Investigating unknown relationships between parameters and 
impressing customers! 

Data is often presented in tabular form. Tabulation has specific 
advantages, the chief of which is that actual values are made available. 
On the other hand it is often difficult with tabulated data to visualise 
trends and deviations from those trends. Graphical representation is 
the main alternative to tabulation. Several formats are used including 
histograms, pie charts and X-Y plots. This paper will concentrate on 
the two-dimensional X-Y plotting of data and the consequent analysis 
of the data trends. 

X-Y Plotting 
We have two axes - "X" (abscissa), and "Y" (ordinate). The 

"X" values are generally referred to as the "independent variables" 
whereas the "Y" values are the measured "dependent variables." 
For example, we can have a set of X values that represent specified 
peening times together with Y values that are Almen arc heights 
measured for each peening time, The magnitude of each Y value 
must depend in some way on the corresponding X value, hence the 
use of the term 'dependent variable'. In most situations the indepen- 
dent variable is the one that we exercise control over and the depen- 
dent variable is the one that we subsequently measure. For example 
we may vary the shot flow rate by pre-determined amounts and mea- 
sure the effect that has on Ahen arc height (keeping all other para- 
meters constant). Each point has an X and a Y value - its "coordi- 

nates" - that speclfy where it will appear on a graph. If we plot a set 
of data points on a graph, we usually add some form of 'data analy- 
sis'. This normally takes the form of curve fitting. We can employ 
either interpolation or regression curve fitting techniques. 

Interpolation involves fitting a curve that must pass through 
every point. Regression uses some form of 'model equation' 
and attempts to minirnise the differences between data points 
and the model equation. 
Regression techniques are relatively intellectually demanding 

because the model chosen has to be justified. Whatever the objective 
is for curve fitting we should try to understand the mathematical 
basis of the particular data analysis procedure that is being used. 

Consider the 'fictitious' data that has been presented in Fig.1. 
The data from a point whose coordinates are 0,O and has a maxi- 
mum at about 9,18 (the first value in each coordinate pair repre- 
senting the X value and the second representing the Y value). The 
human brain is a very powerful computer. It will normally seize 
upon a "modei" that represents the 'beihaviour; of the data. in tms 
case, most people would say that there appears to be a straight-line 
relationship between the X and the Y values. The general equation 
for a straight line is given by: 

y = a +mr! !I? 
where a is the value of y when x=O and m is the slope of the straight 
line. 
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Fig.1. X-Y &taplot with "least-squares" linear fit. 
One method of 'analysing' the data in Fig.1 would be to draw a 

line using a pen and ruler. The brain would then employ a natural 
'minimal error' technique so that the straight line would be placed 
such that the data points were at some perceived minimum distance 
from the straight line. That technique has the disadvantage that it is 
'subjective' - each person will draw a slightly different line. Long 
before the universal employment of computerised curve-fitting tech- 
niques, it was possible to remove this subjective element by employ- 



ing the so-called "least-squares" mathematical procedure on the 
actual data. Fig. 1 shows the data with a "least-squares" straight line 
that has been computer-fitted (rather than drawn by hand). The 
line appears very similar to that which would have been fitted 'by 
eye'. The computer program has worked out that the slope, m, of 
the straight line is 2.00. Note that the slope is independent of the 
scales used for the X and Y axes. The computed slope value, 2.00, is 
the same as would be given using the 'simple arithmetic' calculation 
of 18 (maximum value of Y) divided by 9 (maximum corresponding 
value of X). The 'a' value (for equation 1) has been computed as 
minus 0.00727, meaning that the computed straight line does not 
quite go through the 'origin', (0,O). An 'r2' value (defined later) 
has been computed as 1.00, meaning that a straight line is regarded 
as being a perfect fit (to three sipiicant figures). Minute examina- 
tion of the graph will reveal that the deviation of the actual data 
points is "freakish"! That is because the point coordinates were 
deliberately chosen so that they alternate 'just above and just below' 
a straight line. Such a variation with real data would be a statistical 
freak, equivalent to throwing a perfect succession of odd and even 
numbers when rolling dice. The example is used here simply to 
illustrate that deviations from a fitted curve should be examined 
carefully. 

Interpolation techniques 
The preceding case study was an example of a regression, as 

opposed to an interpolation, technique being applied. Remember that: 
interpolation techniques guarantee that a fitted curve 

will pass through every data point. 
The two main types of interpolation are Lagrangian and Splines. 
Lagrangian interpolation is simply interpolating the data with a 

pdpon~ id .  The genera! eqation of a pobpmdd :!is: 
y = ao + alxl + ax2  + a3x3 + . ....+a& (2) 

where a, a1 etc. are called the coefficients of the equation with y and 
x as the dependent and independent variables. n, an integer, is the 
"degree" or "power" of the polynomial. More commonly the coeffi- 
cients of particular polynomials (as opposed to the general polyno- 
mial) are given successive letters. For example, for a cubic equation: 

y = a +bx + cx2+ dx3 

The number of points in the data set to be analyzed determines 
the order of the polynomial that must be selected if it is to pass 
through every point. Therefore, in a data set with n points, the 
interpolating polynomial will be of n-1 degree. Hence with three 
data points the interpolating polynomial will be of 'second degree' 
and have the form y = a + bx + cx2. It is a mistake, however, to 
assume that every polynomial must have one more coefficient (a, b, 
c, etc.) than the order of the polynomial. If the equation passes 
through the origin (y equals zero when x equals zero) then ao (or a) 
is always zero. For example a straight line that passes through the 
origin has an equation y = bx (b being the value of a1 in equation 
(2)) whereas a straight line that does not pass through the origin 
has an equation y = a + bx, where a is the value of y when x equals 
zero. What is universally true is that we need one more point than 
the degree of an interpolating polynomial in order to define it. 
Hence two points are needed to fix a straight line, three for a second 
degree polynomial (quadratic), four for a third degree polynomial 
(cubic) etc. Note that not all of the required points need to be actual 

measurements. For example, we can assume that (0,O) is a true 
point on a saturation curve plot - since it is saying that we get zero 
Almen arc height for zero peening. We do not need to carry out an 
actual measurement to prove that! 

Splines are pieces of curve that join each point. The simplest 
spline fit is 'linear' - where straight lines join all of the points. 
Other forms are 'quadratic', 'cubic' and 'tension' splines. 

Fig.2 shows Lagrangian and spline interpolation techniques 
applied to a hypothetical set of peening intensity data. These interpo- 
lations were generated using a graphing programme called 
"Easyplot, 4.0.3", ref. 1. Remember that, by definition, interpolation 
curves must pass through every point. 
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Fig.2 Interpolation techniques applied to bypothetical peening 
intensity data. 

Only one of the three interpolation curves in Fig.2, the linear 
spline, appears to be at all sensible. The variation implied by both 
the cubic spline and the polynomial is not what shot peeners would 
expect. That is because they are different in shape from the familiar 
general shape of the numerous peening intensity curves that have 
been published. In other words, we are relying on our experience to 
tell us whether or not a given curve is satisfactory, If we analysed 
every available peening intensity curve mathematically, we should be 
able to decide on the shape of curve that would best represent all 
sets of peening intensity data. The most important conclusion here is 
that: 

Subjective judgement is very useful in deciding the 
appropriateness of specific data analysis techniques. 

With interpolation techniques, there is no question of 'best fit'. 
All interpolation techniques provide 'solutions' rather than 'fits'. 
'Best fit' is only relevant for regression techniques. At this stage, it is 
worth noting that different computer programs can give different 
solutions for some interpolation techniques. The exception is for lin- 
ear splines because only trivial mathematical programming routines 
are needed to simply join each pair of points. Fig.3 (next page) 
shows a 'cubic spline' curve fitted to the same data as in Fig2 but 
using a different program, 'CurveExpert 1.31', ref.2. 

The difference between the cubic splines predicted by Easyplot 
and CurveExpert is 'academic'. It does, however, provide evidence of 
differences in the mathematical procedures used by different com- 
puter curve fitting programs. 
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Fig.3 Cubic spline fitted by CurueExpert to &ta usedfor Fig.2. 

Regression techniques 
Regression techniques seek to minimise the disagree- 
ments between data points and a chosen mathematical 
equation (or model). 
In applying regression techniques, we have to be very clear 

about our objectives. A simple objective would be to say, "I must 
have a curve that gives a perfect fit". Such an approach is wrong 
because that objective is only satisfied by applying interpolation - 
using, for example, a polynomial of one less order than the number 
of data points. Then the polynomial will be a 'perfect fit' since it 
must pass through all of the data points. The question of realistic 
objectives is examined later - by means of case studies. 

In essence our problem is to select a 'model' that is 'satisfacto- 
ry' when applied to a particular situation. This selection of a satis- 
factory model depends, to a greater or lesser extent, on our prior 
knowledge of what the shape of the resulting curve should be. At 
one extreme, we may know for certain what the shape of curve 
should be. For example, a curve of measured velocities against 
known time intervals for a falling steel ball should be a straight line 
(velocity = acceleration x time). At the other extreme, we may have 
no idea as to what shape a curve should be, but seek to fit a curve 
that at least represents some realistic physical concepts. 

Having applied a particular mathematical model, it is usual to 
determine the corresponding 'goodness of fit'. Probably the most 
commonly-used test for 'goodness of fit' is the 'chiquared' factor, 
xZ. xZ is computed as (1.0 -sdsaj where 'se' is the sum of the 
errors squared (calculated Y-coordinates minus the data Y-coordi- 
nates) and 'sa' is the sum of the differences squared between the 
data Y-coordinates and the mean Y value of the original data points. 
The better the fit the smaller the value of sdsa so that 3 approaches 
unity as sdsa approaches zero. xZ is presented as "?" in the 
'Easyplot' graphs that follow - presumably to avoid confusion 
between the Greek letter x and x. 

The following three case studies are used to illustrate how dif- 
ferent objectives can be realised by correct selection of curve fitting 
technique. 

Case Study 1: Residual Surface Stresses Induced by Peening. 
A set of Ahen A strips had been peened for different times in 

order to produce a saturation curve. The surface residual stress was 
measured for each strip using X-ray diffractometry. Three sets of 
parameters were therefore available - Almen arc height, residual 

stress level and peening time, see Table 1. Plotting surface residual 
stress level against peening time gives Fig.4 where a simple linear 
interpolation has been applied. Linear interpolation is, however, 
unsatisfactory in this situation. That is because abrupt changes in 
stress at each point are impossible. A satisfactory model equation is 
needed which, of necessity, must involve regression analysis. One 
approach is to use a curve-fitting programme to solve the problem 
for us. Simply asking 'CurveExpert' for the best fit to the nine data 
points comes up with the fourth-order polynomial shown in Fig.5. 
The shape is quite unlike that which the linear interpolation (Fig.4) 
might lead most observers to expect! No criticism of CurveExpert is 
implied - it is an excellent program - the point being made is that 
subjective judgment is always needed. 

Table I Arc heights and surface residual stress values forpeenedA 
strtps. 
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Fig.4 Surface residuul stresses in peenedA strips, $170 shot. 
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Fig.5 Fourth-order polynomial fit to peening data 
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At this stage, it is important to consider any clues coming from 
a consideration of the original data. In this case we are starting with 
strips that each originally contain a small level of tensile surface 
residual stress (+54MPa), Using the principle of 'superposition of 
stresses', it is reasonable to consider an equation of the form: 

Residual stress = 54MPa + f(peening time) (3) 



where f(peening time) means 'some mathematical function of 
peening time'. 

We can then try subtracting 54MPa from each of the measured 
residual stress values - regarding 54MPa as a 'fixed component'. 
Trying to find an equation to fit 'f'(peening time) to the residual data 
still doesn't work well so we have to look further at the original 
data. It seems possible, examining the data represented in Fig.$ that 
there may be a linear component - making the compressive 
stress level fall after reaching a peak value. A reasonable physical 
explanation of that would be the well-known phenomenon of 'work 
softening'. Inspection of the data in Table lshows that the stress 
level has fallen by about 120MPa in the 120s between peening for 
120s and peening for 240s. That would imply a 'linear component' 
equivalent to a stress increase equal to tMPa - where t is the peen- 
ing time in seconds. If again we use a spreadsheet to organise the 
data we get now three sets of 'component' data as shown in Table 2. 

The components of the data are plottedkpresented in Fig.6. 
One problem remains - to find an equation that is a reasonably 
good fit to the 'Residual' component. Standard computer curve fit- 
ting prqrp%s &d net pre.ddo a;l accep~z~le ayrwer ful- die au&olt. 
That seems to be odd since the residual component has quite a sim- 
ple shape. In desperation, the author thought that he could certainly 
fit an equation to the residual data if the stress values were positive 
rather than negative. That was because the shape would then be very 
similar to a 'coverage curve' - for which several solutions were avail- 
able. This 'reversed sign' residual data is plotted in Fig.7. The auto- 
matic best bit equation provided by CurveExpert was the familiar 
Avrami equation that is so appropriate to shot peening saturation 
curves. 
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Fig. 6 Components of raw stress/peening time duta. 
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Fig. 7 7 m e d  sign plot of residual component from Fig. 6. 
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Pig8 C u ~ e ~ f i t  to surface residual stress@ening time data,for Ahen A 
strips. 
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We are now in a position to curve fit an equation that contains 
all three components - Fixed, Linear and Residual. The mathemati- 
cal form of that equation is: 

where a is the 'fixed component', b*x is the 'linear component' and 
- (c(1-exp(-d*x)) is the 'residual component'. The resulting curve 
fit to the original raw data is shown as Fig.8 for which the value of 
'a' has been deliberately set as 54, 

The curve shown in Fig.8 does appear to be a reasonably good 
fit to the data. Note that the curve-fitting programme has decided 
that the linear component parameter b should be 0.939 -which is 
close to the original guess of 1. The physical model for the data is 
one of a compressive stress being induced by peening which obeys a 
coverage-type equation, which is superimposed on the original ten- 
sile stress and is accompanied by a linear stress-relaxation factor. 
From a scientific point of view this model should be (a) tested against 
any other published data, (b) examined for reproducibility (using 
the same peening conditions) and (c) applied to data sets obtained 
using different peening conditions. If general agreement is then 
found it may be concluded that this model is generdy satisfactory 

The preceding case study was an example of the extreme type 
of case for which no model of curve shape was known to exist- 
one had to be established. There are many intermediate cases 



where one has some idea of what the shape of curve should be. A 
classic example is that of Almen saturation curves for which the 
general shape is well-known 

Case Study 2: Shape of Alrnen Saturation Curves. 
This is, without doubt, the most frequently-encountered curve 

shape in shot peening - but what is that shape? Fig.9 is a copy of the 
type of curve shown in an American Military Specification, where 
there is a sharp 'knee' at the peening time T. The existence of such a 
sharp 'knee' is, in the author's opinion, erroneous and gives a false 
impression of the actual shape of real saturation curves. There is no 
apparent scientific reason for the existence of a sharp 'knee'. 
Curiously, different copies of the same Military Specification, ref.3, 
have different Fig.9'~. Some show a sharp knee and others don't. 
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Fig. 20 Representation ofAlmen arc heights means, from reJ4. 

, 

EXPOSURE TIME 

Fig.J Almen Saturation Curve. 
In order to investigate the true shape of Almen saturation 

ci~.rvm it is necessary to look at, a large collection of data that has 
been obtained using carefully controlled production variables. One 
such collection is that presented by Wieland, ref. 4, where 388 
Almen strips were shot peened and a number of average values 
obtained. Fig.10 shows Wieland's data without a curve having been 
fitted. In terms of perceived shape this data has some similarities to 
a 'coverage curve' for which one is plotting the percentage area 
covered by random impacts as a function of time, r e f 5  Coverage 
curves have the form: 

Percentage Coverage = 100 (1-exp (-R*t)) (5) 
where R is a constant determined by the rate of impacting. 
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Fig.11 Curue fit of equation (9 to Wieland data. 

The main difference between coverage and saturation curves is that 
the Y scale cannot be a percentage but is a real dimension. That can 
readily be accommodated by applying an equation of the type: 

h e n  arc height = a(1-exp(-b*t)) (6) 
where a and b are constants and t is peening time. 

If we now use a curve-fitting program to fit a curve having the 
form given in equation (6) to the data of Fig. 10 we get Fig.11. 

We see from Fig. 11 that the curve fit to the data is fairly good 
but does not, however, accurately define the shape. There are con- 
sistent deviations: from 75 to 125s the curve overestimates and from 
125s onwards the curve underestimates. It is important to remember 
that the shape of curve should represent some physical model of the 
causes of X-Y variation. Equation (6) as a model is simply implying 
that Almen arc height is directly proportional to coverage based on 

i&n&cd snb~rird r -"- Lm-p~ts. It is rp,aa&le, te q p e s e  
that, as the surface is progressively work-hardened by peening, the 
impact areas will become correspondingly smaller. We can accom- 
modate that observation by moddymg equation (6) as follows: 

7 = 2(1 - qj(-b*xc))  (7) 
where y is Almen arc height; a, b and c are constants and x is the 
peening time. 

The constant c must be less than unity so that xc gets smaller as x 
increases, Applying equation (7) to the Wieland data gives Fig.12. 

; 10 
y;;a(l-exp(-b'xr)) max dev:0.204, t=0.997 
a=14.2, b=0.0607, c=0.852 
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Pig12 CumleJit of equation (7) to Wiehnd data. 

The curve fit given in Fig.12 still shows the consistent deviations 
mentioned previously, A common observation of saturation data is 
that there appears to be a linear component - at long peening times 
the curve tends towards a straight line. We can, therefore, further 
refine our physical model by proposing that a linear component 
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Pig.23 Curue fit of equation (8) to Vieland data. 

should be included. We can accommodate that observation by modi- 
fymg equation (7) as follows: 

y = a(1- exp(-b*xc)) + d*x (8) 
where d*x is the linear element, d being a fourth constant. 

With the modification incorporated in equation (8) we get the 
curve fit shown in Fig. 13. 

The curve fit given by equation (8) is excellent - as indicated 
by the 'r2' value of 1.0000. Before one can propose that equation 
(8) truly represents the shape that every saturation curve should 
have it has to be tested on other data sets. The author has wr ied  
Gat snch tests on dozens of &ah secs from a vanety of sources and it 
has proved to be extremely reliable. Furthermore, no evidence of a 
sharp 'knee' has been found in any of the data sets examined. 

It is worth noting that a simpler form of equation (8) gives a 
v q l  gmd fit tc s m e  d2k sets. T k t  ffom is: 

The power term xc has been replaced by x so that there are now 
only three constants. It is not advocated that equation (9) should be 
used generally as a test of the shape of a saturation data set. 
Equation (8) is the preferred option. 

Case Study 3: Residual StressDepth Profiles. 
The majority of residual stresddepth profiles for peened com- 

ponents have a similar shape. That shape is illustrated in Fig.14. We 
see that there is a surface layer of compressed material with the 
highest level of compression occurring just below the extreme surface. 
The compressive residual stress then continues to a much greater 
depth before it has to give way to balancing tensile residual stress. 
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FiR; 14 Ckmic residual stress pro@ for shot-peened component. 
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Pig.15 Model of residual stress/depthprofile. 

For this case study the problem to be tackled is to produce a 
model that will predict residual stress profile curves. AU such models 
have to be based on a set of assumptions. 

For this particular model the following assumptions will be made: 
1. The level of surface compressive stress is half of the yield strength 

of the as-peened material, Y. 
2. The maximum level of compressive stress is two-thirds of Y and 

occurs at 20% of the depth of compressed material, D. 
3. A balancing tensile stress of 10% of Y is reached at 1.2D. 
4. A cubic polynomial interpolation will be appropriate. 

For a material whose Y value is 1000MPa, peened to give a 
compression depth, D, of O.Smm, then the model produces the 
curve as shown in Fig.15. The curve appears to have a reasonable 
shape relative to our general experience of residual stressldepth 
profiles. 

-1- - - . .- . -2 . 
LIE p;u;ufieuxs of tilt: cubic eqwdtiion fir. are given in Bg.i5. 

Differentiating that cubic and putting it equal to zero gives us the 
value of depth (x) for maximum compressive stress. Substituting 
that value back into the cubic equation gives us the value of maxi- 
mum compressive stress. Applying those procedures predicts that a 
depth of 0.123mm gives the maximum compressive stress of - 

672MPa. The computer program has, correctly, yielded an r2 value 
of 1.0000 (perfect fit). That is because we are using interpolation 
not regression. 

The model may be extended in several ways to make it more 
generally applicable: 
1. Because we rarely know the yield strength of the as-peened mate- 

rial we can use some other measure. It is suggested that the ulti- 
mate tensile strength (U.T.S.) of the unpeened material is a good 
indication of the yield strength of as-peened material. That is 
because the U.T.S., as measured in a tensile test, is the strength of 
material deformed to the point of plastic instability. After the 
U.T.S. is reached further strengthening (true strength) occurs up 
to the point of fracture. During peening the material is subjected 
to multiple impacts that strengthen the material to about the 
U.T.S. level without any chance of plastic instability occurring. 

2. Because we cannot know the depth of the compressed layer in 
advance we can make an assumption that it is equal to the dimple 
diameter. Dimple diameter can either be measured for a given 
peening situation or can be predicted. The following is a useful 
formula that allows us to predict dimple diameter, D: 

Contfnued on page 30 



Continued from page I l  

D = k . ~ . ~ ~ ~ ~ . ~ ~ 5 . y ~  (10) 
where k is a constant (equal to 1.278 when using SI units), S is 
mean shot diameter, p is the shot density, v is shot velocity and Y is 
the yield strength of the material being impacted. 

As an example of using equation (10) if we require a dimple 
diameter of 0.5rnm (as for deriving Fig.15) then with steel shot of 
density 7868kgm fired with a velocity of 20.32ms ' at a surface 
having a Y value of 1.381GPa then we would need to be using shot 
with a diameter of 1.78mm. 

This case study is an example of developing a model that will 
predict a given type of curve without having to produce any actual 
experimental data. The reliability of the predicted curve is only as 
good as the assumptions that have been made. Hence extreme care 
has to be taken before any reliance can be put on the predictions. 

Conversely it can be a very good guide as to the peening 
parameters that may lead to a required residual stress depth profile. 
Measured residual stress profiles can be used to confinn the applic- 
ability of the model. 

Discussion 
This paper has shown that there is a considerable range of 

curve-fitting procedures that can usefully be applied to different 
aspects of shot peening data analysis. The analysis of any given data 
set should start with deciding the most appropriate curve-fitting pro- 
cedure. Having then obtained a curve, together with its mathematical 
equation, it is often appropriat~ to w e  hat eequatio tto deteLvjr,e 
specific characteristics. One approach, in the absence of standard- 
ized routines, is to employ a mathematically-orientated computer 
program - such as Mathcad, ref.7. Routines can be written to deter- 
mine, for example, the 'saturation point', T, on a saturation curve. 
Once written, such routines greatly simplify the problem of deriving 
critical points objectively. Getting good results from curve fitting is 
not, however, as simple as having good data and the right model. 
When performing non-linear fitting, it is critical to take notice of all 
of the information that is provided and check that the fit is really a 
good one that makes physical sense. The algorithm being used by a 
given computer program knows nothing about shot peening! It is 
therefore up to the individual to accept or reject its results based on 
one's knowledge and experience. 

Perhaps the most important application of curve fitting is in 
connection with saturation curves. There is, for example, consider- 
able interest in producing computer-generated saturation curves 
based on a limited number of data points. We must, however, be 
very careful about our objectives and situation before relying on 
such curves. Consider the situation of a fully-automated, computer- 
controlled, shot peening facility where we hope to guarantee that a 
pre-determined regime of shot type, shot velocity, gun-to-workpiece 
distance, impact angle, etc, will always give us the same Almen arc 
height for any given peening time. It can then be argued that there is 
no need to produce a confirmatory saturation curve. Such an ideal 
situation probably cannot exist due to unavoidable process variation. 
At least two Almen strip tests at different peening times would be 
required at reasonable intervals in order to have confidence that the 
'ideal' regime was being maintained. If we need to establish the 
saturation curve that arises from a new set of process variables we 
must, of course, peen at least four strips. 

It has been argued that four strips are sufficient to determine 
the shape of a saturation curve. That argument relies on a belief that 
(a) each reading contains no error and (b) an equation with only 
three coefficients is perfectly satisfactory for shape determination. 
It is contended here that at least five strips should be used so that a 
four-coefficient equation (equation (8)) can be derived as a 'fit' to 
the six data points that then arise (including 0,O). That contention is 
based on the physical model that supports equation (8) and on a 
perceived error when applying a three-coefficient equation. That 
error is illustrated in Fig.16 where the slope of the linear compo- 
nent is almost fifty times greater (0.75588/0.015989) for the three- 
coefficient curve than it is for the four-coefficient curve. The peening 
time axis has been deliberately extended in order to illustrate the 
gross difference in linear components. 
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Pig. I6 Comparison of three- andfour-coefficient cuwe fitting. 

The relatively small linear component predicted by the four- 
coefficient curve is consistent with the author's experience of 
analysing a wide range of saturation curves. 

Rather than being constrained by a limited number of Almen 
strips there is a more satisfactory alternative. Fig. 17 (next page) 
shows a representation for a single Almen A strip peened with eight 
passes whilst remaining clamped. The displacement is monitored by 
an LVDT during peening and continuously recorded, ref.6. Eight 
peening passes were made giving total peening times of 2,4,  8, 16, 
32,60,120 and 240 seconds. The corresponding saturation curve is 
plotted as Fig.18. Hence we have a complete saturation curve pro- 
duced during peening using only one strip. This 'interactive' tech- 
nique is also useful for monitoring any variation in peening parame- 
ters during the actual process. It should be noted, however, that the 
displacements for as-clamped Almen strips are much less than for 
'released' strips of the same thickness. Clamped Almen N strips, on 
the other hand, give displacements similar to those of Almen A strips 
after their release for measurement (for equivalent degrees of peen- 
ing). LVDT displacements are easily calibrated against Arc heights 
achieved on release from clamping. 

A small, but significant, feature of computerised curve fitting is 
that most programs require that "initial guesses" of coefficient val- 
ues be made. Those programs often include built-in default values 
that, if not over-ridden, commonly result in a "Math Error" message. 
With practice, initial guesses become easier to predict. For example, 
with saturation curves the 'a' value is similar to the maximum arc 
height value. 



1 

0 
0 100 Mo 300 

Peening time - s 

Pig.17. interactive monitoring ofpeening intensity. 
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EZg.18. Saturation curve plotted with htafrom Fig. 2 7. 

Computer-generated residual stress profiles can give a useful 
guide as to the peening parameters that will give a required profile. 
They are, however, only predictions and suffer from the number and 
detail of the assumptions that must be made. One major problem is 
that the behaviour of the material during peening cannot be accu- 
rately predicted. For example, stainless steel may develop transfor- 
mations that have a profound effect on the residual stresses. At least 
one major peening company uses its own program for predicting 
stress profiles. 

In conclusion it may be argued that the application of comput- 
erised curve fitting routines should become a standard feature of 
peening control. Specific computer programs are mentioned in this 
paper simply because the author is familiar with them. 

'CurveExpert' has the advantage that it is 'shareware' so that 
newcomers to curve fitting can try out a fully-functional program 
without incurring any expense. 'Easyplot' can display several curves 
on the same graph. It is, however, primarily a plotting (rather than 
curve-fitting) program and is quite expensive. In some situations 
CurveExpert's algorithm provides fits that defeat Easyplot when using 
the same data - and vice versa! 

Finally, the best way to learn about curve-fitting is to do it. Do 
not be put off by mathematics! 
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