
INTRODUCTION 
Coverage is arguably the most important variable in shot 

peening. It is defined as the percentage area of a surface that has 
been impacted. This paper examines the major factors that influ
ence the increase in coverage that occurs as peening progresses. 
A secondary objective is to stimulate debate on the vexed ques
tion of "What is 100% coverage?" 

In the 19th century investigators recognized the need to 
reduce information to numerical values in order to avoid the 
ambiguity of verbal description. Even with numerical descrip
tion there is room for ambiguity. Lewis Carroll's Governor was 
on firm ground when he said, "Surely Her Radiancy would 
admit that ten is nearer to ten than nine is - and also nearer than 
eleven is." Less firm would be a shot peener's assertion that 
"100% coverage is nearer to 100% coverage than is 300% 
coverage." 

RANDOMNESS OF INDENTS 
If we assume that shot produces a distribution of constant

diameter, circular indentations then mathematical models for 
coverage generation are relatively simple. Several authors have 
used such models. Fig. I shows a representation of the two 
extremes of indentation distribution. One type of perfect order is 
shown, where indentations are placed at each intersection of a 
square grid. Using a 'uniform random number generator' for the 
x and y coordinates of each indentation centre simulates perfect 
randomness. Normal peening, using air-blast or wheel machines, 
creates a distribution that is almost, but not quite, random. 
'Flapper wheel' peening generates rather less randomness than 
does normal peening. At the other extreme, 'tramp peening' 
(designed for peen forming operations) creates a nearly uniform 
distribution of large indentations.Virtually perfect uniformity 
and randomness can be achieved on a laboratory scale, by using 
a precisely-located single indenter. Such an approach is illustrated 
in fig.2 for which a flat mild steel block has been controlled by 
an x-y table located under a fixed-load single indenter. 

COVERAGE FOR RANDOM INDENTATIONS 
The theory of coverage development for random indenta

tions is well-established. The simplest model is based on assum
ing statistically-random shot particles arriving at the compo
nent's surface at a constant rate and creating circular indents of a 
constant size. Given those assumptions, an Avrami equation 
appropriate to the situation is: 

C = 100{1- exp (-1tr2.R.t)} (1) 

where C is the percentage coverage, r is the radius of each 
indentation (so that 1tr2 is the area of each indentation), R is the 
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Fig. I Perfectly-ordered and 
perfectly-random indenta
tion distributions. 

Fig.2 Laboratory-generated 
ordered and random 
indentation distributions 
on mild steel. 

rate of impacting (number of impacts per unit area per unit time) 
and t is the peening time. 

It is important to note that the predicted coverage, C, given 
in equation (1) is only exact for an infinitely-large sample. When 
plotted using specific combinations, K, of r and R gives continu
ous curves that are exponential towards 100 % coverage, as 
shown in fig.3. That does not mean that we cannot possibly 
achieve 100% coverage with a real, finite, sample. In practice 
we have a rapidly-increasing possibility that 100% coverage 
will be achieved for a real component. 

The following exercise shows how shot peening can be 
simulated and coverage findings compared with theoretical 
predictions. 
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Fig.3 Coverage curves for different peening rates, K. 

Exercise on Coverage Generation 

30 

This exercise utilizes a standard modelling procedure. This 
procedure involves a 'picture frame' around a 'picture' that accu
rately simulates random coverage by identical circular ' indenta
tions'. The 'picture frame ' width is always the radius of the sim
ulated indentations. 

A total of fifty circular indentations, all of unit radius, were 
randomly sited such that their centres lie on or within a square 
that has a side of six units. Twenty-five indentations were situated 
first, followed by the remaining twenty-five indentations. That 
corresponds to doubling the peening time for a model situation 
of constant peening intensity and rate. The two corresponding 
coverages were compared with those predicted by equation (1). 

Generating fifty pairs of random centre coordinates simu
lates random siting of the indentations. Fifty uniformly random 
numbers were generated using Mathcad® for the x-coordinates 
together with a different fifty numbers for the y-coordinates. 
The first twenty-five pairs were accurately plotted as circles, 
using AutoSketch®, as shown in fig.4. Only the inner four by 
four square can be considered as representative of coverage. 
That is because contributions would be made within the 'picture 
frame' by indentations placed in adjacent 'six by six' squares. 

Fig.4 Twenty-five 
randomly-sited unit 
radius circles. 

A simple visual assessment of fig.4 indicates that the 
' unpeened' areas add up to approximately one of the sixteen unit 
squares. We therefore have a coverage of 'fifteen out of sixteen', 
which is equivalent to C = 93.8%. Image analysis canied out on 
an 'image-friendly ' version of fig.4 gave a coverage of C = 
94.2%. Substitution of r = 1 and R.t = 25/25 in equation (1) 

gives that C = 100(1- exp (-n. 25/25)) or C = 95.8%. The 
denominator of 25 corresponds to a 'five by five' square that is 
the true representation of the average area of simulated peening. 

Fig.5 shows the c01Tesponding effect of plotting all fifty cir
cles. In this example all sixteen unit squares have 100% cover
age, which is equivalent to C = 100%. Substitution of r = 1 and 
R.t = 50/25 in equation (1) gives that C = 100( 1-exp (-n. 50/25)) 
or C = 99.8% . 

This exercise illustrates the difference between coverage 
generated by a finite sample of indentations and coverage 
predicted for an infinite number of indentations. Repeating the 
exercise with different sets of x-y coordinates would yield 
slightly different values for coverage. Infinite repetition of the 
exercise using 50 'indentations ' would give an average value for 
coverage of the theoretical 99.8%. The single example used here 
only simulates a tiny area of a peened component. If the indents 
had a diameter of 0.1 mm then the 50 indents would have 
covered an average area of only 0.25 of a square millimetre. 
A 50mm by 50mm square area of a component would require 
500,000 indents to achieve the average 99.8% coverage. The 
larger the peened area being considered the greater is the possi
bility that there will be some minute areas that have not been 
impacted. It is worth noting that with only the 94.2% coverage 
represented in fig.4, the'unpeened regions' are small relative to 
the indentation diameter. It should also be noted that random 
placement of 'indentations' involves multiple overlapping well 
before even 80% coverage is achieved. 

Fig.5. Fifty randomly
sited unit radius circles. 

COVERAGE FOR UNIFORM INDENTATIONS 
Coverage calculations for uniform peening involve simple 

geometry. Fig.6 shows how different coverages can be achieved 
using a 'square-packed' arrangement of indentations. Imposing 
one square-packed arrangement yields '?8.5% coverage, whilst 
imposing a second, precisely offset, arrangement gives 100% 
coverage. It may be noted that, for the inner four by four square, 
the 'density' of unit radius indentations required is 0.25 and 0.5 
per unit area for 78.5 and 100% coverage respectively. That 
compares with only 54.4 and 79.2% coverages achieved using 
random indentation and the same densities of indentation. 

Whilst uniform peening may be regarded as a 'laboratory 
curiosity', it is simple to achieve for test specimens. Commercial 
exploitation would require, for example, a system of multiple 
captive balls in a flexible mount that could be dynamically 
loaded using pulsed hydraulics. 
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COVERAGE CONTROL 

Fig.6. Coverages of 78.5 and 
I 00% achieved using "square
packed" indentations. 

Coverage variation on a microscopic scale cannot be avoided 
for random peening. Sophisticated jigging and computer-control 
of shot streams minimises macroscopic variations in the average 
coverage imposed in commercial peening situations. The aver
aoe coveraoe achieved relates to the dictates of the particular b b 

specification involved. From a theoretical point of view, con
trolled, repeatable, imposition of exactly "100% coverage" over 
a component then appears to be impossible to achieve, impossi
ble to measure and also undesirable. One realistic approach 
would be to use the term "Relative Coverage" for the C of equa
tion (1) and to specify a minimum value for Relative Coverage -
bearing in mind that values less than 100% are necessary. The 
use of this term is illustrated in the following examples. 

Examples of Coverage Prediction 
Assume, for example, that a 99.9% Relative Coverage, C, is 

specified and has to be produced using four identical passes over 
each area of a component. At that level of coverage the average 
of unpeened surface would be just one square millimetre in 
every thousand square millimetres of peened surface. That one 
square millimetre would be made up of many thousands of 
reoions too small to be detected. In any case those tiny regions b 

would all have been severely plastically deformed, since they 
would be very close to indentations. They would therefore con
tain high levels of compressive residual stress. 

Equation (1) can be expressed as: 

C = 100(1- exp(- K.n)) (2) 
where C is the relative coverage, K is the average area of each 
indentation multiplied by the number of indentations per unit 
area per pass and n is the number of passes. 

Substituting into equation (2) C = 99.9 and n = 4 gives that 
K has a value of 1.727. Noting that K is the same for each pass 
we can now substitute K = 1.727 into equation (2) together with 
the other three values of n (1 , 2 and 3). The resulting relative 
coverages are given in Table 1; together with a calculation based 
on using twelve passes instead of four. The value required for 
one pass, as indicated in Table 1, is easy to assess quantitatively 

Table I 
Development of Relative Coverage using Identical Passes. 

No. of passes Relative Coverage 
_o/o 

1 82.2 

2 96.8 

3 99.4 

4 99.9 

12 99.9(999999) 

on a real component. Provided that at least that value is 
achieved with one pass then four passes will guarantee reaching 
therequired 99.9% relative coverage. The figure given for twelve 
passes is so near to 100% that it would be impossible to detect 
the difference (from 100%) anywhere on a large peened area. 
With 99.9999999% coverage the proportion of material impacted 
more than twenty times would, however, be very high. 

An alternative approach to coverage prediction is given in 
an undergraduate group project summarised as follows: carrying 
out catch tests to calibrate the throughput via a Magna Valve - to 
determine mass per second exiting the nozzle; weighing a fixed 
number of S 110 shot particles - to determine the number of par
ticles being thrown per second; peening a static plate for a short 
period to determine the cross-section of the shot stream and to 
provide a sample for indent diameter measurements; hence cal
culatino the rand R values for equation (l); estimating the 

b . 

time required for a rectangular polished stainless steel specimen 
to be slid across the shot stream simulating a single pass yield
ing 8Q% coverage; calculating the number of identical passes 
required to achieve near to a 99.9% coverage, according to equa
tion (1); carrying out that number of passes, trying to assess cov
erage achieved at each pass and, finally, recommending 
modifications to the flow rate required to obtain precisely 
99.9%. This project was, deliberately, more involved than the 
pragmatic approach given in the previous example. One outcome 
was that assessment of high coverages was invariably extremely 
difficult with no unpeened areas being detectable at 99.9% 
whereas the 80% (or thereabouts) assessment proved to be both 
simple and reproducible. 

DISCUSSION 
The theoretical principles presented in this paper have been 

applied for more than twenty years in the author'.s u~versity . 
shot peening laboratory. General experience has md1cated that 1t 
is always possible to produce peened components that no one 
could p,vve had not received ' 100% coverage' , using standard 
specified procedures. Conversely, there was always the knowl
edge that the components had not actually received precisely 
100% coverage - since infinite peening times would have been 
required and the components would have been subjected to gross 
overpeening. 

The term ' 100% coverage' , as generally interpreted, is 
ambiguous. Visual inspection with a lOx magnifier cannot guar
antee that there will be no tiny unpeened areas. A more realistic 
approach would be to introduce a specification parameter that 
was measurable and therefore achievable. 
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