
It is a paradox that we cannot measure residual stresses 
directly. Measurements of strain can be made, which are then 
converted into stress using available elastic constant values. 
This procedure is familiar to anyone involved in strain-gage 
analysis. Tiny changes in some physical property (that is propor­
tional to strain) are monitored - such as resistance changes in 
the fine wire of strain gages or of interplanar spacing for x-ray 
analysis. 

There is a vast literature on x-ray stress analysis. The inten­
tion with this article is to present only the basic engineering 
principles that are relevant for understanding how residual 
stresses can be measured in shot peened components. An exam­
ple is given to show how x-ray studies can reveal variations in 
residual stress with distance from a peened area. 

INTERPLANAR SPACING CHANGES 
X-ray stress analysis relies upon the fact that tiny changes 

in interplanar spacing of crystalline materials can be measured 
accurately. Fortunately virtually all shot peened components are 
crystalline. With a crystalline material we have a direct relation­
ship between interplanar spacing and the angle of x-ray reflec­
tion. That relationship is embodied in the famous Bragg equa­
tion that can be expressed in the form: 

nA = 2dhk1.sin8 (1) 

where A is the wavelength of the x-radiation used, dhkl is the 
interplanar spacing of the crystal planes being monitored, n is an 
integer and 9 is the angle of reflection. 

Differentiation of equation (1) yields: 

.!l9= -.!ldhkI/dhkI.tan9 (2) 

Equation (2) shows that for a residual stress causing a 
strain, Lld11kild11kl, there will be a movement, Ll9, of the diffraction 
angle. The magnitude of .!l9 depends directly upon tan9, so that 
large diffraction angles are necessary. For peened high-strength 
steels there will be maximum compressive residual lattice strains 
of about -0·01. By substitution in equation (2), we find that there 
will be a shift of x-ray diffraction angle equal to +2· 138° if the 
diffraction angle used is 75°. At a diffraction angle of 15° the 
same lattice strain would give a shift of only +0·154°. Fig.I shows 
a simplified representation of the x-ray diffraction situation. 

If we have no residual stress then the unstrained inter­
planar spacing, du, can be measured - as in (a). A compressive 
residual stress, cr, decreases the diffraction angle and the corre­
sponding increased interplanar spacing, dn, can be measured. 
The measured lattice strain is then (dn - du)/dn which corresponds 
to the vector quantity, En, shown in (b). 
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Fig.I Decrease of diffraction angle, 9, with application of compressive 
stress, cr. 

STRESS-STRAIN RELATIONSHIPS 
The penetration of x-rays is so small that we can consider 

the situation for peened surfaces to be one of simple two-dimen­
sional stressing. For any stressed component there will be two 
principal stresses, CTI and cr2, acting along x and y axes that are 
both perpendiculars to each other and to a z axis (which is nor­
mal to the peened surface). With strain-gage analysis we can use 
a rosette of three gages to determine the directions, x and y, 
which the principal stresses make relative to some known direc­
tion, <j>, see fig.2. Three strains are measured which are all paral­
lel to the component's surface. With x-ray analysis we cannot 
measure strain parallel to the component's surface. Instead we 
rely upon strain measurements made at various angles, 'JI, to the 
surface. Two such strain directions are illustrated in fig.2, being 
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Ez and E¢. 'I'· As will be shown later, the residual stress, CT¢, for the 
known direction <j> is deduced from these measured strains. 

Fig.2 Stress and strain 
symbols used in x-ray strain 
measurement. 
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RELATIONSHIP BETWEEN MEASURED LATTICE 
STRAINS AND RESIDUAL STRESS · 

y 

The classical theory of isotropic elasticity, as enunciated by 
such legendary figures as Timoshenko, gives that: 

u+1 . 2 u (3) 
e+,'I' =E.cr •. sm \j/-E(cr1 +cr2 ) 

where vis Poisson's ratio and Eis elastic modulus. 

Equation (3) forms the basis of x-ray stress analysis. From a 
mathematical point of view, it is the simplest of all types of 
equation - a straight-line, y = m.x + c. As we vary the angle \jf 
the only parameter that changes is the lattice strain, E¢. 'I' · We can 
therefore write equation (3) as: 

• 2 
E+, "'= m. sm \II+ c (4) 

where m, the slope of the straight line, is equal to CT¢ (v+ 1 )IE 
and c, the intercept of the straight line with the lattice strain axis, 
is equal to -(v/E).(m+m). 

The best way to understand any equation is to use it. 
Consider the hypothetical example illustrated in fig.3 . 

Fig.3 Peened disc showing orientation of significant directions. 

A circular steel disc has been uniformly peened so that a 
surface residual stress of - 500MPa has been induced. In this 
particular situation the residual stress does not vary with angle <j>, 

so that we have that m = CT2 = CT¢ = -500MPa. The elastic con­
stants for this steel disc are known to be such that E = 210GPa 
and V= 0.30. CT¢(v+l)/E then equals -0.0031 and-(v/E).(m+CT2) 
equals +0.00143. Putting these values into equation (4) gives 
that E¢. 'I' = - 0·0031. sin2\j/ + 0.00143. This equation is plotted as 
fig.4. 

Four points have been marked on the plot corresponding to 
\jf angles of 0, 30, 45 and 60' . The so-called "sin2\j/" technique 
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Fig.4 Linear relationship between lattice strain and sin2
\j/. 

involves a set of such points and a least-squares straight line fit­
ted to the points to establish the equation. The so-called "two­
exposure" technique employs just two points and therefore does 
not require a least-squares fitting procedure to determine the 
straight-line relationship. 

With x-ray stress analysis the parameter actually measured 
is the angular position, 8, of the diffraction peak. That is then 
converted into interplanar spacing, dljl, using the Bragg equation. 
A vital quantity is the interplanar spacing for unstressed material, 
du. We cannot, however, measure du directly for a stressed com­
ponent. Instead we use an average of measured ct-spacings. 
This procedure is illustrated by fig.5 for which the lattice strains 
of fig.4 have been converted into interplanar spacings. The 
known interplanar spacing for unstressed material, du, is given a 
value of 1.000000. Relative to that unit value the maximum and 
minimum measured spacings would be 1.001430 and 0.999105 
respectively. The average of those two values is 1.0002675. 
Using 1.0002675 for du (instead of 1.000000) introduces an error 
of only one part in four thousand. That error is insignificant 
relative to the accuracy with which we know such factors as the 
elastic constants. 
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Fig.5 Data from fig.4 plottted in terms of interplaner spacings. 

Within the phrase "classical theory of isotropic elasticity" 
the one beguiling word is "isotropic". The bulk modulus, E, for 
a component manufactured from a given material can vary by 
more than 50%. That is because the elastic 'constants' of indi­
vidual crystals vary with crystallographic direction. With x-ray 
stress analysis one specific crystallographic direction is involved 
- the perpendicular to the set of crystal planes undergoing 
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reflection. It is therefore necessary to use values for E and 
v that have been measured using x-rays for the specific 
crystallographic direction and component material being 
studied. 

Fig.6 Part of ordered array of 0·67mm diameter indentations on 
mild steel plate. 

SURFACE RESIDUAL STRESS STUDY 
A perfectly-ordered array of peening indentations was 

produced on an as-rolled plate of mild steel using a 
2·00mm ball indenter and an X-Y table, see fig.6. The 
array involved 6 rows of 21 indentations in a square array. 
Each indentation was 0.67mm diameter and centred on a 
Imm grid.Chromium Ka radiation was used to determine 
the surface residual stress. The x-ray beam was con­
strained so as to in-adiate a 12mm by l.5mm rectangular 
area of the specimen. With the specimen mounted on a 
micrometer table, measurements of stress were made at 
intervals of 2.00mm along the measurement line shown in 
fig .7. Three of the ten measurement positions are shown. 
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Fig.7 Schematic scale drawing of peened area and x-ray beam 
movement. 

The primary objective was to determine the variation 
of induced residual stress with distance. Measurement val­
ues are shown in fig.8 together with a superimposed repre­
sentation of the peened area - to scale. The as-rolled plate 
had an initial tensile residual stress of 50MPa. 

It can be deduced from the measurements that peen­
ing has produced a maximum compressive residual stress 
of about 175MPa (some 40% of the U.T.S.) with a 'cover­
age' of only 34.7%. Compressive surface residual stress 
extends away from the peened region to a distance equiva­
lent to about ten times the indentation diameters (far 
greater than previously supposed). 

The array of indentations used for this experiment is atypical, but can 
be justified for research purposes. Further studies will be carried out 
using 'ordered peening' in the light of the useful results achieved. 
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Fig.8 Variation of surface residual stress with distance across peened mild steel 
plate. 
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