
Accuracy of computerized 
saturation curve analysis byDavidKirk 

INTRODUCTION 
Accuracy has two components: precision and bias. Attention 

has to be paid to both components if we are to achieve high levels 
of accuracy. 

Imagine that we have a digital thermometer, sensitive to 
changes of 0.001 °C, which always reads 104.167°C±0.001 °C 
when its probe is immersed in boiling pure water at atmospheric 
pressure. That would represent perfect precision but would have a 
large bias of 4.167°C and therefore poor accuracy. On the other 
hand, we could have a simple mercury thermometer that was only 
sensitive to ±0.1 °C but always read 100±0.1 °C when immersed in 
pure boiling water. That would represent low precision but zero 
bias and therefore better overall accuracy. 

Our primary objective in saturation curve analysis is to deter­
mine the Almen arc height that satisfies the "10% criterion". The 
accuracy with which we achieve this objective depends upon three 
factors: the accuracy of our arc height measurements, data set 
characteristics and finally saturation curve analysis procedure. All 
three contain elements of variability (converse of precision) and 
bias. This article considers, quantitatively, the causes and effects 
of these elements with respect to the overall accuracy of saturation 
curve analysis. 

ACCURACY OF ALMEN ARC HEIGHT MEASUREMENTS 
(a) Variability 
All arc height measurements have some degree of variability. 
Consider the two hypothetical sets of Almen arc height data, A 
and B, given in Table I . These are for sets of twelve identical 
strips peened using the same conditions but by different operators. 
The objective in both cases was to impose an arc height of 
0.0063". It can be seen that both operators were successful on 
average. The variability of arc heights for operator A was, however, 
much less than that for operator B. This difference is quantified by 
the respective standard deviations of0.0001" and 0.0003". 
(Standard deviations are easily calculated using Excel. We high­
light a cell and insert, for example, "=STDEV(Al:A12)" where 
Al :A12 contains our twelve arc height values.) 

We do not need to understand the mathematical basis of 
'standard deviation' in order to use it effectively (we can drive 
within speed limits without knowing how a speedometer works). 
The term standard deviation refers to the ' spread' to be expected 
from a set of values that are ' normally distributed'. 'Normal' 
distributions for standard deviations of 0 .0001" and 0.0003" are 
shown in fig.I. The area under both curves is the same (1.000) 
representing the 100% probability of recording a value some-
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Table 1 
Variability displayed by two sets of Almen arc height data. 

Arc heights (inch x 1000) 

Strip No. Set A Set B 

1 6.2 6.3 

2 6.3 6.5 

3 6.3 5.9 

4 6.2 6.7 

5 6.5 6.0 

6 6.3 5.9 

7 6.3 6.4 

8 6.4 6.3 

9 6.2 6.2 

10 6.3 6.5 

11 6.3 6.7 

12 6.1 5.9 

AVERAGES 6.30 6.30 

STANDARD 

DEVIATIONS 0.10 0.30 

where. We can see that the probability of obtaining a value very 
close to the mean 0 .0063", is much greater with the smaller stan­
dard deviation than it is with the larger one. The data in Table 1 
agrees with that prediction. Conversely, the probability of obtain­
ing a value well away from the mean is much smaller with a lower 
standard deviation . Table 2 presents a useful quantification of that 
effect. 

The significance of the probabilities given in Table 2 is 
twofold. On the one hand we should expect about one in three 
values to be one standard deviation or more away from the mean 
value . If someone regularly reports a lower probability than the 
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Fig.] Spread of arc heights about a mean value of 0.0063". 
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Table 2 
Probability of obtaining a specific value for 

normally-distributed measurements. 

No. of standard deviations Probability of obtaining 

away from the mean value. value. 

1 One in three 

2 One in twenty 

3 One in four hundred 

'norm' then we should be suspicious! On the other hand if some­
one regularly reported values more than three standard deviations 
from the 'norm' we should be worried! 

We can usefully quantify the origin of different values of 
standard deviation for Almen arc height determinations. In order 
to do that we use a term called "variance". Variance is simply cr', 
where cr is the standard deviation. The advantage of using -vari­
ance is that total variability is simply the sum of the variances of 
the contributory factors. The total variability of repeated Almen 
arc height values, 0"2

T , is made up of the separate variances due to 
strip variability, measurement errors and variations in applied 
peening parameters. Hence we have that: 

0"2
T = cr's + 0"2

M + cr' AP ( 1) 
where S, Mand AP refer to strip, measurement and applied peen­
ing respectively. 

Almen strips are produced to very close tolerances so that the 
cr's contribution should normally be very small . 'Premium grade' 
strips will produce a smaller variance than 'standard grade' strips 
(other factors being equal). The 0"2

M contribution depends upon the 
quality of the Almen gage and the operator's skill/assiduousness. 
With good equipment and careful attention to detail, 0"2

M should 
also be relatively small . The major factor contributing to variability 
would then be <J2

AP. 

During actual shot peening there will always be some varia­
tion of the parameters that would affect strip deflection. Examples 
are: air pressure fluctuation, variations in flow rate and shot size 
(as when a batch of new shot is working its way through) . 

Equation (1) quantifies Almen strip measurement variability. 
Consider, by way of illustration, two examples A and B reflecting 

Table 3 Effect of separate variabilities on total 
variability of Almen strip measurement. 

as a2M a'N' Total 
strip measurement peening variability 
variability varlabilitv variability 

Standard 
A(Good) deviation 0.01 0.03 0.095 0.10 

Variance 0.0001 0.0009 0.009 0.01 

Standard 
B (Poor) deviation 0.04 0.10 0.280 0.30 

Variance 0.0016 0.01 O.D78 0.09 

good and poor combinations of factors respectively. Table 3 shows 
the results of applying equation (1) to hypothetical values 
(expressed in units of thousandths of an inch) . 

It is important to appreciate that variability of data cannot be 
completely avoided. Data variability can, of course, be minimized 
by careful attention to all three contributory factors. 

(b) Bias 
One obvious source of bias is the original strip curvature or 

'prebow' . This can be allowed for by 'zeroing' the gage with the 

slightly curved strip in place. The origins and minimization of bias 
with strip measurements are well-documented and therefore will 
not be discussed here. These include support ball wear, zero error 
and gage calibration over the full working range. 

DATA SET CHARACTERISTICS 
Important data set characteristics are: variability, number and 

range of the points that make up the set. All three characteristics 
affect the selection of fitting curve and the subsequent accuracy of 
saturation curve analysis . To make life complicated they all inter­
act with one another. 'Regression' curve fitting is designed to 
accommodate data variability ('interpolation' merely joins data 
points and ignores variability). The larger the number of data 
points the greater will be the accuracy of the final analysis . Data 
range has a profound effect on the accuracy of saturation 
curve solutions. In spite of that, there is virtually no published 
information on the subject. Consider, for example, SAE Data Set 
No. 8 from Sheet 3 of the Almen Solver (downloadable from 
www.shotpeener.com). This data set is presented in fig.2 where a 
three-parameter equation has been fitted. That equation is 
(h = a(l-exp(-b*t"c))) where his arc height , tis peening time and 
a, band care the three parameters . There are six data points, 
covering a time range from 0.25 to 4 . If, however, the operator 
had been restricted to only four data points then a variety of satu­
ration points would have been obtained - depending on the range 
covered by the four points! 
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Fig .2 Three-parameter saturation curve 
fitted to SAE Data Set No.8. 
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Fig .3 Two-parameter saturation curves for 
different ranges of SAE Data Set No .8. 
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This phenomenon can be illustrated by selecting different ranges 
of four points from Data Set No.8; for example the first four, middle 
four and last four. The corresponding fitted curves are shown 
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Table 4 Saturation points for different ranges 
of points from SAE Data Set No.8. 

Strip No. Peening Time Arc Height 

1 0.25 8.1 

2 0.5 9.6 

3 0.75 10.0 

4 1 10.3 

5 2 10.8 

6 4 11.3 

Range Saturation point height Saturation point time 

All six, 1 - 6 9.58 0.43 

First four, 1 - 4 9.15 0.37 

Middle four, 2 - 5 9.51 0.51 

Last four, 3 - 6 9.93 0.77 

in fig.3 where computer-optimized saturation curves have been 
drawn using a two-parameter exponential equation [h = a (I -exp 
(-b*t))]. 

Data Set No .8 is given in Table 4 together with the saturation 
point values corresponding to the four curves shown in figs.2 
and 3. 

The consequence of using only four data points with different 
time ranges is that we introduce a bias to our saturation point. 
That bias (which is the second factor reducing accuracy) depends 
on the position of the four data points relative to the saturation 
point. The magnitude of the bias will also be affected by the 
curve-fitting equation that is being used . Bias can never be 
eliminated but having more than four data points in each set can 
minimize it. 

The variability of the data, together with the range and num­
ber of points , affects the overall accuracy. An unrealistic exception 
would be if every data point had zero variability. The larger 
the variability of individual data points the greater is the need to 
have more points in each set - provided that they cover an appro­
priate region of the saturation curve. 

SATURATION CURVE ANALYSIS PROCEDURE 
(a) Curve Finding versus Curve Fitting 

A clear distinction has to be drawn between curve finding and 
curve fitting . Curve finding involves trying to find an equation that 
gives a 'best fit' to our set of data points. There are computer 
programs incorporating a facility that allows such an equation to 
be found from hundreds of 'library' examples. Manual curve 
sketching has a similar approach in that it involves the brain in 
trying to find a 'best fitting' curve. Both bias and lack of precision 
are unavoidable with manual curve fitting to any given data set. 
Computerized curve fitting, on the other hand , is when a program 
fits our data points to a pre-determined equation. The parameters 
of our pre-determined equation are adjusted until the differences 
between our data points and those of the curve are minimized. 
The program, being automatic, ensures perfect precision in terms 
of data analysis but cannot, of course, remove bias and variability 
from our data. 

It is on! y curve fitting that is appropriate for saturation curve 
analysis. 

(b) Curve Equation 
Our first problem is to find an appropriate equation. The 

general shape of a saturation curve is well known - qualitatively. 
Arc height initially rises quickly, then slows down rapidly and 
finally becomes almost constant. This observed shape is caused by 
the mechanisms involved in peening the strip. Each indentation 
causes a tiny increase in arc height, largely due to plastic deforma­
tion. Arc height should therefore approximate to the shape of a 
coverage curve (which has the well-known form: C = 100(1-exp(­
b*t))) which interprets as: h = a(l-exp(-b*t)). The parameter "a" 
increases with size and velocity of the shot particles. Parameter "b" 
increases with shot flow rate. As peening progresses the strip work 
hardens so that successive indentations induce less plastic defor­
mation and so are less effective in producing increments of arc 
height. Adding a "c" parameter to the peening time accommodates 
this work hardening effect. We then have that: h = a(l-exp(­
b*t"c)). A third, minor, mechanism is a complex combination of 
factors that include self-annealing and work softening. This com­
bination progressively offsets the effect of work hardening and can 
be represented by a linear component, d*t, added to the preceding 
equation. A 'true shape' for saturation curves can therefore be 
expressed in the form: h = a(l-exp(-b*t"c)) +d*t. 

We could only expect to have a data set that gave a ' true 
shape' curve if the variability effect of the individual data points 
was virtually eliminated. That is possible if we average hundreds 
of repeat measurements for each set of peening conditions. Fig.4 
shows a 'true shape' distribution of data points based on Wieland's 
published summary of hundreds of measurements . The three 
curves just described are included (in x-y format), together with a 
two-parameter 'saturation growth' equation, enshrined in the 
French Specification: NFL 06-832, y = a*x/(x+b) . It can be seen 
that all four equations are reasonably good fits to the 'true shape'. 
The two-parameter exponential equation has a slight negative bias 
and the two-parameter growth rate equation has a slight positive 
bias - yielding saturation intensities of0.00130 and 0 .00126" 
respectively. 

(c) Interaction between curve equation and data set 
characteristics 

The next problem is to allow for the interaction between 
curve equation.and data set characteristics. If a relatively low 
accuracy for the saturation point is acceptable then we can use 
the bare minimum of four points for the data set size. A four-point 
data set size prescribes the use of a two-parameter equation (such 
ash = a(l-exp(-b*t))). Greater accuracy will be achieved , for 
given data point variability, by using five-point data sets and a 
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Fig .4 True shape data points fitted to a variety of equations. 
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three-parameter equation (such ash= a(l-exp(-b*t"c))). A six­
point data set size will result in an even greater level of accuracy. 
The four-parameter equation, h = a(l-exp(-b*t"c)) +d*t, can be 
used with six-point data sets and might be expected to yield the 
most accurate result. In practice, however, three-parameter equa­
tions are more 'robust' and should normally be the preferred 
choice for six-point (or more) data sets. 

(d) Accuracy of Curve Analysis Procedure 
We do not need to be statisticians to appreciate the effects 

that our unavoidable arc height variability has had on our curve 
analysis. Visual examination of the plotted curve together with the 
data points will give us a qualitative impression of data set integri­
ty. Computerized curve analysis allows quantitative impressions to 
be realized. Consider, for example , the results for the four-point 
SAE Data Set No. 6 shown in fig .5 and Table 5. Of the four points 
in the set the first two deviate substantially from the curve and the 
last two are very close to the curve. 
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Fig .5 Two-parameter curve fitting of SAE Data Set No .6. 

The curve fitting procedure used here is the "least-squares" 
method. This means that the 'MINSUM' of 0.99 in the last column 
of Table 5 is the smallest sum of differences-squared that can 
be found. Applying the same curve-fitting procedure to the six 
other four-point SAE data sets gives corresponding MINSUM val­
ues of O .05, 0 .09 ,0 .05, 0 .03 ,0 .02 and O .08. We can therefore 
equate the calculated MINSUM with the level of integrity for a 
given data set and hence question the integrity of set no.6 (MIN­
SUM of 0.99). The "MINSUM" depends upon the number of 
points so that an alternative parameter, favored by statisticians , is 
the "RMS" as defined in Table 5. 

Table S Values for two-exponent 
curve fitting of SAE Data Set No.6. 

Strip Time Measured Curve point Difference 

No. Arc Height at same time 

1 1.13 4.6 5.29 +0.69 

2 2.25 8.7 8.00 -0.70 

3 4.5 10.1 10.13 +0.03 

4 9 10.7 10.85 +0.15 

[RMS is the "Root Mean Square' and is the square root of the 

average of the difference-squared values. 

Hence: RMS= SQRT(0.99/4). 

DISCUSSION 

Difference 

-squared 

0.48 

0.49 

0.00 

0.02 

MINSUM "0.99 

RMS=0.498 

All measurements have a degree of accuracy. That accuracy 
can be quantified in terms of precision and bias. The accuracy of 
saturation curve analysis depends primarily on two factors: data 
set characteristics (variability, number of points and peening time 

range) and curve equation. Increasing the number of data points 
offsets unavoidable variability of data. If the data set contains only 
four points then a two-parameter curve is appropriate but some 
bias of the analysis is unavoidable . With six points in a data set, 
bias is virtually eliminated - by being able to apply either a three­
or four-parameter curve equation and by covering a wider time 
range. Data variability within the data set will also be indicated 
more clearly. 

Almen arc height measurements are valuable pieces of infor­
mation . Their value should not be diminished by subjective treat­
ments such as manual saturation curve fitting. Computerized 
saturation curve analysis is a very simple operation and is 
completely objective. The computer program used should indicate 
which curve equation is being employed. Computed differences 
between data points and the fitted curve yield quantified measures 
of accuracy. 

The value of Almen arc height data can be enhanced if it is 
computer-stored together with the computerized saturation curve 
analysis results and job setup details. A standard spreadsheet can 
accommodate all of the corresponding job setup details (shot type, 
machine type and number, machine settings etc.). We can then 
accumulate enough data to establish the standard deviations (of 
saturation intensity, saturation time, 'MINSUM' etc.) for each 
combination of job setup details. Then we can quantitatively 
assess the significance of subsequent 'unexpected results'. We 
could, for example, have a situation where a particular job setup 
was known to yield a saturation intensity of 0.0063" at 4 .0 
seconds with corresponding standard deviations of 0.0002" 
and 0.05 second. If, with the same job setup, the saturation inten­
sity were subsequently found to become 0.00069" (three standard 
deviations away from the mean) at 4.0 seconds we would know 
that that was highly unlikely to be a purely random occurrence 
(Table 2 indicates a 'one in four hundred' possibility). Something 
has probably changed that has raised the 'indentation potential' of 
the shot stream - such as increased shot velocity or shot proper­
ties . Saturation times , though not substantially affecting saturation 
intensities, are useful indicators of shot flow rates and can be 
similarly analyzed. Machine controls have to be set in order to 
impose specified Almen intensities and coverages. Those controls 
have their own levels of accuracy. Peened strip arc heights can be 
used to assess the accuracy of each separate control. The accuracy 
of our saturation curves is a measure of our ability to control the 
relevant peening parameters. 

CONCLUSIONS 
1. The overall accuracy of a saturation curve analysis depends 

primarily on the number, range and accuracy of the arc height 
values in a given data set. 

2. Computerized saturation curve analysis is more accurate than 
manual saturation curve fitting. • 

3. Arc height data should be fitted to an equation that reflects the 
'true shape' of Almen saturation curves. 

4. Computerized saturation curve analysis findings form a 
valuable control feature when used in association with job 
setup details. 

Almen Saturation Curve Solver Program 
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