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Accuracy of Declared 
Peening Intensity Values

Academic Study by Dr. David Kirk

INTRODUCTION
Peening intensity is the arc height of one
particular point on a simulated saturation
curve that is declared as meeting specification
requirements. Three stages are involved:
(i) Generation of a Data Set – Several Almen
strips are given different amounts of shot peen-
ing and the induced arc height is measured for
each peened strip.
(ii) Simulation of a Saturation Curve – the
data set values are used to simulate a satura-
tion curve that represents the continuous
change of arc height with amount of peening.
(iii) Declaration of Peening Intensity – a
particular point on the saturation curve is
selected and declared to be the peening inten-
sity value.

The definition of the term “accuracy”
depends on its context. For peening intensity it
may be defined as having three components: 
(i) Closeness to the true value,
(ii) Exactness of measurement and
(iii) Repeatability of measurement.

Any consideration of peening intensity
accuracy has to be related to the ‘target inten-
sity range’ and its required accuracy.

Shot peeners, inspectors, users and equip-
ment manufacturers have a shared interest in
the accuracy of declared peening intensity val-
ues. This article attempts to present a detached
analysis of the several factors that influence
the accuracy of these values. It is shown that
by far the greatest source of inaccuracy lies
with the different interpretations of saturation
curves allowed using current specifications.
Declared peening intensity values vary by more
than 10% for a given saturation curve - depend-
ing on the interpretation that is employed.

TARGET INTENSITY RANGE
Users specify a range of peening intensity val-
ues as a requirement that has to be met. Rather
surprisingly this range does not have a speci-
fied accuracy. Fig.1 is a representation of a typ-
ical target intensity range – in this case 10-14
(using imperial units). As a target range, the
values of 10 and 14 are exact quantities. Any
declared peening intensity value less than 10 or
greater than 14 fails to hit the target.

Fig.1 Representation of a Target Peening 
Intensity Range of 10-14.

Whether or not a particular declared
peening intensity value hits a required target
depends on the exactness of measurement.
Assume, for example, that a shot stream’s
peening intensity is precisely 9.8758 (noting
that we cannot actually measure to that degree
of precision). If our measurement technique
allowed two decimal places of exactness then
that value would be rounded to 9.88 – failing to
hit the target. With one decimal place of exact-
ness the value would be rounded to 9.9 – again
failing to hit the target. For no decimal places
of exactness (using a crude measurement tech-
nique) rounding gives a value of 10 – now hit-
ting the target!

Current measurement procedures normally
declare peening intensity values to one decimal
place of exactness. It would, therefore, appear
reasonable that ‘hitting the target’ should be
specified as a range with a minimum declared
value of 10.0 and a maximum of 14.0. That
implies, allowing for rounding, that the actual
peening intensity was between 9.95 and 14.04.
Allowing simple integral declared values would
only prevent the actual peening intensity being
acceptable if it was lower than 9.5 (rounding to
9) or higher than 14.4 (rounding to 15).

GENERATION OF A DATA SET
A typical data set of six strips, using imperial
units for arc heights, is given in Table 1 on
page 28.
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Table 1 SAE Data Set No.8.

It is generally assumed that the ‘time equivalent’
values for every point in a data set are absolutely accurate.
These values may be either integral numbers of passes/
strokes or a reciprocal of the relative speed of the shot
stream to the Almen strip fixture. The arc heights, on the
other hand, cannot be absolutely accurate. “Closeness to
true value” is largely a function of gage calibration.
“Exactness of measurement” refers to the last significant
digit of the measurement. This involves 'rounding' (which
is carried out visually for analogue dial gages and auto-
matically for digital dial gages). Hence, for example, the
arc height for the first data point in Table 1 will actually lie
somewhere between 8.050 and 8.149. 8.050 would be
rounded-up to 8.1 and 8.149 would be rounded-down to
8.1. “Repeatability of measurement” is a function of both
gage design and operator training/diligence. Even if the
same peened strip is only being removed and replaced
several times on a gage then the last significant digit will
not always be the precisely the same. 

‘Rounding’ is so commonplace that its significance is
easy to overlook. Rounded numbers carry with them
the implication of exactness. The third data point in
Table 1 is shown, correctly, as having an arc height of 10.0.
If, however, 10 had been entered that would have implied
that the measured arc height was somewhere between 9.5
and 10.4 – rather than lying between 9.95 and 10.04. 
This is a small but important aspect of data presentation. 
Other important aspects of rounding are the avoidance of
spurious exactness and spurious inaccuracy. For example,
the average of three arc heights 10.1, 10.4 and 10.2 is
10.23333333, etc. To quote such exactness would be 
spurious (the arc heights themselves only being exact to
one decimal point) so that the average should be declared
as being 10.23. Spurious inaccuracy can occur when inter-
preting peening intensity times. For example, a peening
intensity time, T, of 10.44 might well have been rounded
down to 10.4. A 10% increase of this rounded-down time is
11.44 which, in turn, rounds down to 11.4. Increasing
10.44 by 10%, on the other hand, gives 11.484 which then
rounds-up to 11.5. It is the 'double rounding' that has cre-
ated the spurious inaccuracy of 11.4 - when the more
accurate value is 11.5.

SIMULATION OF SATURATION CURVES
A continuous curve has to be simulated, using a small
number of data points, as the second stage of peening
intensity value declaration. This simulated curve can only
be an approximation to the ‘true shape’. This could only
have been drawn if a large number of accurate data points
had been available. 

Fig.2 shows the ‘true shape’ for a shot stream that is
constant in terms of peening intensity potential. It has
been shown that this ‘true shape’ can be accurately
represented by a combination of two components: three-
parameter exponential and linear.

Hence:
'True shape' = Three-parameter Exponential 

component + Linear component

The mathematical equation representing the ‘true shape’
is:

h = a(1 – exp(- b*tc)) + d*t (1)
where h = arc height, t = peening time and a, b, c

and d are constants.

Reliable simulation of the ‘true shape’ using equation
(1) would require a large number of accurate data points.
As a compromise, curve equations are selected that are
simpler than that of the ‘true shape’. Typical simpler
shapes have the equations shown below:

h = a*t/(b + t)
h = a(1 – exp(- b*t)) and (2)
h = a(1 – exp(-b*tc))

A common feature of these simpler equations is that
they all exponential – not having the linear component of a
‘true shape’ saturation curve.

The accuracy of simplified saturation curves depends
upon three properties of the data set used in its produc-
tion. These are: 
(i) Number of data points in the set,
(ii) Spread of the data points (in terms of amount of
peening) and
(iii) Individual and collective accuracy of the data
points in the set.

Fig.3 shows an example of a data set that does allow
accurate simulation of the ‘true shape’ of a saturation
curve. The set has six, well-spread, accurate, data points.
The data is an excellent fit to the ‘true shape’equation (1) –
indicated by the r2 value of 0.99853 (r2 is a commonly-used
measure where a value of 1.00000 represents a perfect fit).
An even better fit is obtained to the three-parameter 
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Fig.2  ‘True shape’ of continuous saturation curve.
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equation h = a(1 – exp(-b*tc)) r2 = 0.99866. A very good
fit is also obtained for the two-parameter equation 
h = a*t/(b + t) - with an r2 value of 0.98680. 

The data set shown in fig.3 can be assumed to be
accurate because it is a good fit to a ‘true shape’ curve.
There is an obvious linear component to the ‘true shape’
curve. The other two curves shown are still very good fits –
even though neither curve has a linear component. 

Fig.4 is for a data set that could have been obtained
for the same shot stream that gave the data set used for
fig.3. This four-point set has been deliberately chosen in
order to illustrate the importance of number of points, data
spread and point accuracy.

The data set has been fitted to each of the three
exponential equations listed previously as equations (2).
Different fits are obtained because (i) there are only four
data points, (ii) the spread of points is poor – involving too
high a proportion of long peening times and (iii) the
individual point accuracy is poor because three successive
points have almost the same arc height – rather than
having a progressive increase in arc height.

It is important to appreciate that:

It is incorrect to assume that 
'goodness of fit' implies accuracy. 

Accuracy requires ‘closeness to the true value’. Just
because a set of data is a good fit to a particular shape 
of curve does not mean that that the data set is accurate.
That aspect is illustrated in fig.4. The rational function 
h = a*t/(b + t) has the worst ‘goodness of fit’ but is 
probably the most accurate! The lesson to be learned 
is that data points should be fitted to a known shape of 
curve – not the other way round.

Manual simulation of a saturation curve is less accu-
rate than computer-based curve-fitting, for several rea-
sons: (i) the ‘closeness to true value’ is dubious because
there is a natural tendency to draw a curve that is a good
fit to the data points - rather than one having the known
'true shape' of a saturation curve, (ii) ‘exactness’ cannot be
assured and (iii) 'repeatability' depends on who is drawing
the curve.

DECLARATION OF PEENING INTENSITY
This third stage involves selecting one point on the simu-
lated saturation curve to be the declared peening intensity.
Selection can be achieved either by analyzing the simulat-
ed saturation curve or by simply choosing one of the data
points. There are, however, three different definitions of
“peening intensity” that can be invoked. These three defini-
tions may be termed “10 %”, “Up to 10%” and “Not more
than 10%, for Special Cases.” Each of these will indicate a
different peening intensity for the same shot stream!

1"10%" Peening Intensity Definition
The "10%" definition is "the arc height of the point of a
continuous saturation curve that increases by 10%
when the peening 'time' is doubled." “of” means a
unique point of the simulated saturation curve – not a data
point from the set used to produce the curve. The differ-
ence is illustrated in fig.5 where the peening intensity is
declared to be “8.7”. With this definition “increases by 10%”
is meant to be exactly that – not a rounded value. 

Fig.5 Unique peening intensity point of 8.7 at T.
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Fig.3. Data Set fitted to 'true shape' and 
rational function equations.

Fig.4. 4-point data set fitted to different equations.
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The saturation curve shown in fig.5 was derived 
using a Solver 2PF program for a set of five data points.
Determination of the peening intensity, shown as 8.7
occurring at a 'time' T, was carried out automatically. The
point at which the intensity increases by exactly 10% is
shown as 9.6 (to the nearest decimal point) occurring at
the doubled time of 2T. Computer programs calculate the
peening intensity point’s position with enormous precision.
It would, however, be bad practice to claim a higher preci-
sion than can be justified by that of the actual data points.
Maximum accuracy is achieved by having a data set with
points on either side of the declared peening intensity point.

Manual interpretation of manually-drawn saturation
curves cannot, of course, involve the required 10% increase
with the same exactness as can be achieved using a com-
puter program. Having drawn a smooth curve on large
graph paper it is, however, still possible to determine the
“10%” peening intensity point with acceptable precision.
The standard procedure is iterative – first guesses are
made for T and the values of the curve at T and 2T are
compared for nearness to a 10% increase. Using the curve
shown in fig.5 for example, first guesses for T/2T might
well be 6/12 and 8/16. 6/12 corresponds to an 11.4%
increase whereas 8/16 corresponds to an 8.8% increase –
one increase is too high and the other is too low. A second
guess is therefore that 7/14 would be closer to a 10%
increase than either 6/12 or 8/16. By coincidence the
increase for 7/14 is precisely 10.0%. At the time, T, of 7 the
curve’s arc height is 8.7 with 9.6 at 2T – correct to the
required precision. It should be noted that there is no ques-
tion of an ‘error band’ being needed for the 10 in the 10%
increase. Exactly 10% is used for the calculations. All that
is needed is to arrive at a T/2T pairing that identifies the
peening intensity value to the required exactness – normally
to the nearest 0.1. A useful aid, that removes the need for
calculating 10% increases, is a two-column chart. Arc
height values appear in one column and 10% greater 
values in the adjacent column. Such charts are easily 
produced using Excel. 

The process of selecting the required T/2T pairing can
also be facilitated by the use of pre-printed transparent
“10% graph paper” - an example of its application being
shown as fig.6. A transparency is placed over chart paper
containing the manually-drawn saturation curve. This
curve is intersected by several of the “10% lines”. The most
appropriate line is the one that intersects at two ‘amount
of peening’ points where one is twice the other. In fig.6
AB, the most appropriate line, has been highlighted. This
intersects the manually-drawn curve at T and 2T. At T, the
arc height is 8.66 which rounds to 8.7. Interpolation allows
further refinement of the intersections so that 2T becomes
very close to being twice T although it still yields the peen-
ing intensity to be 8.7 when rounding to one decimal
place. The use of this aid may appear cumbersome but,
with a little practice, identifying T and 2T becomes very
quick. A ‘workshop’ version involves plotting the data and
drawing the saturation curve using a graphed whiteboard.
The “10% graph paper” transparency is then projected onto
the whiteboard using an overhead projector. 

The mathematical basis for “10% graph paper” is given
as an appendix to this article. This allows anyone to 
produce their own copies.

The most important feature of the “10%” definition is
that it leads to a single, unique, value of peening intensity.

2 “10% or less” Peening Intensity Definition
The “10% or less” definition is “the arc height of the
point on a saturation curve that increases by 10% or
less when the peening ‘time’ is doubled”. This require-
ment is illustrated in fig.7. The same saturation curve as
was used for fig.5 has been plotted but with an extended
‘amount of peening’ scale. Data points have been omitted
– for clarity. Any pair of points, such as those shown as 14
and 28, can be used when applying the “10% or less” inten-
sity definition – provided that the lower point is either at or
to the right of A. This leads to the “10% or less” intensity
curve as shown in fig.7. For the simulated saturation curve
of fig.7 the peening intensity values that could be declared
are anywhere between 8.7 and 10.6. 

Fig.7 “10% or less” intensity curve.

It can be argued that, in practice, most users of the
“10% or less” intensity definition would declare an intensity
closer to the minimum available value than to the maxi-
mum available value – thus narrowing the “error band” of
8.7 to 10.6. Against that there is a probability that a satura-
tion curve having large “amount of peening” times would
not show an exponential flattening-out. The arc height
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Fig.6 “10% graph paper” on top of a manually-drawn 
saturation curve.
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tends to increase continuously, albeit slowly, with long
peening times. It is probable that users of the “10% or less”
intensity definition also construct saturation curves manu-
ally. The subjectivity of that procedure then increases the
error band even further.

An important feature of the “10% or less” peening
intensity definition is that the declared value is not unique,
it can vary substantially for a given shot stream - introduc-
ing a substantial error band. 

3 “Not more than 10%, For Special Cases” Peening
Intensity Definition
There are some peening shop procedures where the mini-
mum peening ‘time’ (one pass/stroke/rotation) that can be
applied is longer than the time, T, of the unique point
determined using the “10%” intensity definition. A third
intensity definition is therefore sanctioned that is based on
a schematic “Type II saturation curve”. This type of satura-
tion curve (similar to fig.2 in SAE Specification J443) is pre-
sented as fig.8. The corresponding J443 definition of inten-
sity is quoted as follows:

“ For type II saturation curves the intensity is
defined as the arc height value of the first data point
(i.e. at the minimum possible exposure time, t) pro-
vided that the arc height rises by no more than 10%
when the exposure time is doubled – time 2t. The
intensity shall be interpreted as the arc height value
of the first strip reading.”

A “type II” saturation curve is based on two assump-
tions. The first is that all of the measured data points have
similar arc heights – so that a horizontal line is a reason-
able representation. The second assumption concerns the
variation in arc height prior to the first data point. This is
shown as increasing linearly from zero until it intersects
with the first data point (since it is not possible to establish
a more accurate intersection point). For the quoted intensi-
ty definition the declared intensity is that achieved after
one pass.

Fig.8 Type II saturation curve for “Special Cases.”

The SAE presentation of a “type II” saturation curve is
only ‘schematic’. An actual set of arc heights for 1, 2, 3 and
4 passes would not normally be identical. Fig.9 illustrates
the relationship between “Type I” and “Type II” saturation
curves for a more realistic set of data points. “Type I” is the

normal shape of saturation curve - that allows the deriva-
tion of the unique peening intensity point, S. 

The first data point on a type II saturation curve can
be anywhere to the right of S. It follows that the range of
declared peening intensity points would be the same as
when applying the “10% or less” definition described previ-
ously. In most real situations the first data point, 1, would
not be anywhere near as close to S as in the example used
for fig.9. Unlike the two previous definitions, the declared
intensity value is that of a single data point. Any value
based on a single measurement is less accurate than one
that is based on averaging several measurements. 

DISCUSSION
The accuracy of declared peening intensity values depends
on the accuracy achieved at each of three succeeding
stages: generation of data set, simulation of saturation
curve and declaration of peening intensity. These are inter-
dependent stages. If the data set is inaccurate then the two
succeeding stages cannot rectify that inaccuracy. Poor sim-
ulation of a saturation curve (even when based on an
accurate data set) will mean that an accurate declaration
of peening intensity becomes impossible. Finally, even if an
accurate simulation of a saturation curve has been
achieved (based on an accurate data set) then there
remains the problem of deciding which arc height on the
curve is to be declared as the peening intensity value. For
the same shot stream, the declared peening intensity value
will vary by more than 10% - depending on which of three
different definitions of “peening intensity” is invoked. This
is obviously not a satisfactory situation.

Error bands are additive so that a definition-induced
error band only makes life more difficult for shot peeners.
The ‘definition-induced error band’ can easily be eliminated
for Type I saturation curves by deleting the “10% or less”
definition completely. Unique saturation intensity values
can easily be derived by applying just the “10%” definition.
Type II saturation curves, on the other hand, necessitate a
different intensity definition. Overall, the use of just two
intensity definitions would be a welcome clarification of a
presently ambiguous situation. 

Declared peening intensity values should be rounded
to an agreed level of exactness - one decimal point when
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Fig.9 Comparison of normal saturation curve, type I, and
“special case” curve, type II. 
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working in thousandths of an inch arc height. It should 
not be possible for a measured peening intensity value 
to be rounded to an integral value in order to satisfy a 
customer’s stated range. For example, a measured value 
of 9.5 should not be allowed to satisfy a stated range of 
10 -14.

Appendix
DERIVATION OF MATHEMATICAL EQUATION FOR
“10%” GRAPH PAPER
The required feature of “10%” lines is that the y-value
should increase by precisely 10% when the x-value is 
doubled. A starting position is to assume that the variation
of y with x is of the type shown in equation (1) in which c
is a constant:

y = xC (1)

Doubling of x to yield a 10% increase in y can be
expressed as equation (2):

1.1y = (2x)c (2)

Equation (2) can be written as:

1.1y = 2c.xc (3)

Dividing equation (3) by equation (1) gives that:

1.1 = 2c (4)

Applying logarithms to equation (4) gives that:

c = log2(1.1) (5)

Equation (5) is the required solution for the constant, c.
It is that “c is the log to the base 2 of 1.1”. The required
mathematical equation for a series of “10%” lines
becomes:

y = a.xc (6)

where a is a variable and the constant c is equal to
log2(1.1).

The numerical value of the constant, c, is given (to five
significant figures) by:

c = 0.13750 (7)

Substituting c = 0.1375 into equation (6) gives the final
working relationship that:

y = a.x0.1375 (8)

The example of derived “10% graph paper” shown as
fig.6 was obtained by substituting a limited number of
values for a into equation (8) and superimposing the
resulting curves onto a conventional orthogonal gridline
background. Working examples of “10% graph paper” use
a much larger number of values for a – say 40 to 60. The
paper can either be converted into a transparency or used
directly for plotting data points and simulated saturation
curve. l
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