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Introduction 
 
Shot peening (SP) is a widely used cold working process. A number of analytical solutions were 
developed in the past to understand the relation between the input parameters and the final outcome; 
unfortunately, these models were necessarily oversimplifications of the complex reality behind a real 
SP providing only an approximate description of the process, since they were severely restricted by 
the underlying hypotheses. In contrast, the evolution of the Finite Element (FE) method in the last 20 
years, linked to the development in computational capabilities, has provided accurate and more 
general solutions. Nevertheless, in many instances FE is still too rigid for the needs of the industry 
during an actual industrial SP process.  
 
Artificial intelligence (AI) methods have been used as an alternative way to deal efficiently with 
complex and ill-defined problems in very diverse fields of engineering as in (Maleki and Sherafatnia, 
2016) and (Kalogirou, 2003). Among their advantages it is worth mentioning that AI methods are able 
to deal with noisy and incomplete data, with nonlinear problems, and that, once they have been 
trained, they can perform predictions and generalizations at high speed. An artificial Neural Network 
(NN) represents a computational approach to solve problems imitating the human brain. In this sense, 
a NN consist of a number of simple processing units called neurons (or neural units) arranged in 
layers connecting the inputs to the outputs. An important necessary (but not sufficient) condition for 
the reliability of a NN as a predictive tool is that the data should be representative of the complete 
input–output space. This method has been successfully employed in many engineering applications. 
For the reader interested, (Iliadis and Jayne, 2013) gathers the contributions to the Engineering 
Applications of Neural Networks conference, showing a large number of examples proving how NN 
provide practical solutions in a wide range of applications. 
 
Objectives 
 
To the best of these authors’ knowledge, no previous research has been focused on correlating the 
machine parameters of the SP process to the final material properties. In this work, an ANN that takes 
the process parameters (rather that the physical parameters) of the SP treatment and obtains the 
final hardness of the material has been developed and experimentally validated. Hardness was chosen 
as the most important mechanical property of the material after SP. The SP was applied on seamless 
TX304HB stainless steel tubes. The output of the ANN is the hardness at a depth of 40 μm as well as 
its uncertainty, measured through the standard deviation. 
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Methodology 
 
Material 
 
TX304HB (18Cr-9Ni-3Cu-Nb-N; UNS S30432; ASTM A213 S30432; ASME SA213 Code Case 2328) is 
an austenitic steel with high strength and high steam oxidation resistance. Its superior steam 
oxidation resistance is achieved by means of a fine-grained microstructure thermo-mechanically 
obtained. The minimum 0.2% proof stress for this material is 590 MPa. A total of 228 tubes fabricated 
in TX304HB steel were available for the present research. The length of the tubes was 6 m and the 
internal diameter (ID) ranged from 25 to 35 mm. These tubes were subjected to shot-peening under 
different conditions, varying the processing parameters; the total number of combinations was 76. 
After peening, samples with a length of 20-25 mm were machined and polished to be subjected to the 
microhardness Vickers test. 
 
The shot peening process 
 
The SP machine employed in this industrial research, which is schematically depicted in Fig.1, allows 
four different processing parameters to be modified: air pressure (P), material flow (MF), line speed 
(LS) and rotation speed (RS). The machine consists of two different parts, a fixed one and a mobile 
one, respectively. The fixed part is constituted by the elements necessary to expel the shot to the 
appropriate values of P and MF whereas the mobile part controls the RS of the tube as well as the LS. 
As can be seen in Fig.1, the motion of the moving part with speed LS to the right, allows the lance to 
be inserted into the tube, which is rotating with rotational speed RS. The following three nozzle sizes, 
L, were employed: 3/8”, ½” and ¾”. A stainless steel shot was used in the process, in conformance 
with the SAE AMS 2431/4C standard (SAE International, 2007). The typical ranges of the machine 
parameters are the following. P (75–120 psig), MF (3.6–17 kg/min), LS (0.1-0.9 m/min), RS (30–140 
rpm). The final quality of the tubes rests on obtaining an increase in hardness (relative to the initial 
value of the raw material) to a certain depth (usually 40 μm) provided that the coverage uniformity 
is achieved. Once the shot blasting media is chosen, the final outcome of the process depends 
exclusively on the adequate combination of the above mentioned parameters. 
 

 
Figure 1. Sketch of the SP machine used in this research. 

 
Microhardness Vickers test 
 
Vickers tests with a load of 50 gf (HV0.05) and a holding time of 10 seconds were performed in the 
cross sections of the samples, in a plane perpendicular to the axis of the tubes. The tests were carried 
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out with a Qness Q10-Q30 device. The total number of tests involved in this study at a depth of 40 μm 
was 3127 and 2316 for bulk material, respectively. 
 
Artificial Neural Networks 
 
In a preliminary stage of this study various transfer functions, architectures and training algorithms 
were compared, using the Neural Network Toolbox of MATLAB 14 software. The linear transfer 
function was used in the final layer of the networks whereas a sigmoid transfer function was 
employed in the hidden layers. Single-layered NNs were early discarded because of their bad 
performance, due to the complexity of the problem. Regarding the training method, two approaches 
are available in MATLAB for “small” problems (as in this case), namely, the Levenberg-Marquardt 
(LM) and the Bayesian Regularization (BR) algorithms. As a rule of thumb, the LM algorithm is 
recommended for most problems, but for some noisy and small problems, BR can provide a better 
solution. The initial tests allowed the superiority of the LM approach to be verified in this case. 
Therefore, several multilayer NNs trained by means of the LM algorithm were employed in this 
research. Finally, after a trial and error process, it was found that a network with three hidden layers 
consisting of 25, 20 and 15 neurons each one, best represented the experimental data. In principle, 
six processing parameters must be considered as inputs for the NN: the four machine parameters -
LS, RS, MF, P- and the size of the nozzle, L, together with the ID of the tube. Moreover, the experimental 
data collected during the study demonstrated the advisability of including the material bulk hardness, 
HVbulk, as an additional input parameter. Therefore, the input vector consists of 7 data. The output 
vector is comprised of two results, the mean and the standard deviation of the hardness at a depth of 
40 μm from the interior circumference of the tube. The distribution of hardness was considered to 
follow a Gaussian model; this hypothesis was validated experimentally. For the training of the NN, 
30% of the dataset was randomly removed, using the remaining 70% data for training; the removed 
30% of the data was subsequently used for testing the network. 
 
Experimental scope 
 
In this research, 228 tubes manufactured in TX304HB steel were subjected to SP. Seven variables 
were considered as input parameters for the NN analysis. These include the four machine processing 
parameters (RS, LS, MF and P) as well as the size of the nozzle (L=3/8”, ½” and ¾”). The internal 
diameter of the tubes, ID, was also a variable, as it ranged from 25 to 35 mm. The final input parameter 
is the hardness of the bulk material. A total of 76 combinations of these parameters was applied and 
characterized. Thus, after peening, samples with a length of 20-25 mm were machined and polished 
to be subjected to the microhardness Vickers test. The total number of Vickers tests on treated and 
bulk material was 3127 and 2316, respectively. 
 
 
Results and analysis 
 
Gaussianity of the Vickers hardness 
 
The present research assumes that the hardness distributions of HVbulk and HV40µm are of a Gaussian 
type; to validate the reliability of this hypothesis, all the data sets (the 76 groups of data with the same 
processing parameters) were subjected to the KS test of normality at a significance level α=0.05. The 
results showed the validity of the Gaussian assumption since p>0.05 for 71 and 75 out of the 76 cases, 
for HVbulk and HV40µm, respectively. Therefore, except for these very few occasions, it can be concluded 
that there is no evidence to reject the null hypothesis.  
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Validation of the NN 
 
The tests carried out indicate that the hardness distribution of shot-peened tubes can be reproduced 
in a reliable way by means of artificial NNs. Networks were employed to predict the mean and 
standard deviation of the distributions of hardness. In Fig. 2(a) the experimental mean values, 
HV40μm(exp), and the results obtained by means of NNs, HV40μm(NN), are compared for the total 
dataset. These data were linearly fitted obtaining a fairly accurate 1:1 correlation (the slope of the 
fitting line is 0.9982) between experimental and numerical data. The coefficient of determination R2 
is 0.859 (which means that 85.2% of the variability in HV40μm(NN),is explained by its relationship with 
HV40μm(exp)). Moreover, the 95% prediction bounds are represented in the figure; the difference 
between the prediction bounds and the fitting amounts to ~15 Vickers units (VU). With respect to the 
standard deviation, in Fig. 2(b) the NN predicted values, SD(NN) are represented against the 
experimental ones, SD(exp). Again, the linear fitting shows a slope close to 1:1 but the scattering of 
points is more pronounced. The 95% prediction bounds were represented too; the difference in this 
case between them and the linear fitting is ~15 VU. Fig. 2(c) and (d) are equivalent representations 
including only the 30% of the dataset that was used for testing (as explained above, 70% of the dataset 
was used for training the NN). As can be seen, the patterns mentioned above are reproduced again, 
although with a greater dispersion which results in a reduction of the coefficient of determination, 
more pronounced in the case of the mean. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Comparison between experimental and NN predicted data. (a) mean values, total dataset; 
(b) standard deviation, total dataset; (c) mean values, testing dataset; (d) standard deviation, testing 

dataset. 
 
As an additional example, in Fig. 3 a comparison between the empirical CDF and the prediction 
obtained by means of NN (for one arbitrary combination of processing parameters) is shown. 
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Figure 3. Comparison between the empirical and the NN predicted CDFs (arbitrary combination of 

processing parameters). 
 
 
Conclusions 
 
The following conclusions can be drawn from this experimental and analytical research: 
 The distribution of hardness for each of the combinations of processing parameters was modelled 

as a Gaussian one. This hypothesis was experimentally validated by means of the Kolmogorov-
Smirnov test. On this basis, the output vector of the neural network is comprised of two results, 
the mean and the standard deviation of the hardness (at a depth of 40 μm from the interior 
circumference of the tube). For the training of the network, 30% of the dataset was randomly 
removed, using the remaining 70% data for training; the removed dataset was subsequently used 
for testing. 

 The Neural Networks were designed and validated using the corresponding toolbox provided by 
MATLAB 14. Feed-forward networks with back-propagation were employed in all cases, using the 
Levenberg-Marquardt algorithm for training. After a trial and error process, it was found that a 
network with three hidden layers consisting of 25, 20 and 15 neurons each best represented the 
experimental data. The linear transfer function was used in the final layer of the networks 
whereas a sigmoid transfer function was employed in the hidden layers. 

 The neural networks defined this way were able to faithfully reproduce the experimental results. 
Thus, the correlation between experimental and numerical values of harness show a slope of 
0.9982) and a coefficient of determination of 0.859. The corresponding values for the standard 
deviation are 0.994 and 0.4934, respectively. The ability of the networks to predict the 
experimental results was demonstrated by comparing the experimental cumulative distribution 
function against the distribution obtained from the neural network. 
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