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The Curvature of Peened Almen 
Strips and Its Applications 

INTrODuCTION
Peened Almen strips have a familiar shape—displaying both 
longitudinal and transverse curving—after release from 
hold-down. Fig.1 shows how the duplex curving contributes 
to the measured arc height, h.

Fig.1. Duplex curving induced in a peened Almen strip.

 At a first glance, both curves appear to be arcs of a circle. 
This is, however, incorrect. The two curves are, in fact, both 
parabolas. If a parabola is graphed, an optical illusion can be 
induced. This phenomenon is illustrated by fig.2. 

  
Fig.2. Longitudinal Parabolic shape of a uniformly peened 

Almen strip.

 Curve B has the same equation as curve A but with 
the vertical scale magnified by a factor of ten. It is difficult 
to differentiate visually the shape of curve A from that of a 
circular arc hence the concept of an optical illusion. 

 This article embraces an analysis of why peened Almen 
strips have this parabolic shape together with experimental 
evidence and a consideration of its practical significance. 
Understanding the cause of strip deflection enables us to 
identify and control variations in peening procedure. One 
section is presented in the form of an article. The tutorial 
includes a demonstration of how calculus can be employed to 
solve a peening problem!

ExPErIMENTAl EVIDENCE
The results of an experimental program titled “Factors 
Affecting Almen Strip Curvature Readings” were presented at 
ICSP7, Warsaw, 1999 by D.Kirk and R. Hollyoak (pp291-300). 
Measurements were made using a Kemco 600 co-ordinate 
machine and QCT-3d measuring software operating with 
digitized points. Figs. 3 and 4 show the longitudinal and 
transverse deflection variations for a peened N strip. 

 
Fig.3. Longitudinal curve shape of a peened Almen N strip.

 Figs.3 and 4 are a clear indication of the parabolic 
nature of the curves induced into a peened Almen strip. The 
fitted equations were y = -0.00183x2 0.135x + 2.60 and y = 
-0.00271x2 0.0485x +6.05 respectively with goodness of fit, r2, 
being 1.00. Both equations correspond to that of a vertical-
axis parabola. Other parabolas were noted in the quoted 
ICSP7 paper.
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Fig.4. Transverse curve shape of peened Almen N strip.

TuTOrIAl ON PArABOlIC BENDING Of 
STrIPS
“Hi guys. This tutorial is about how bending moments induce 
parabolic bending of rectangular strips. You will find it useful 
if you ever aim to be an expert shot peener.
 Consider a simple model of an office ruler supported 
near to each end (as shown in fig.5). Press down on the ruler 
at a point close to A, using a reasonable force that we will call 
“F”. The ruler will hardly bend at all. As we move our finger to 
a distance x we observe that noticeable bending now occurs. 
If we continue moving the finger we note that maximum 
bending probably occurs halfway along the ruler at a distance 
from A of L/2. 

   
Fig.5. Finger bending of an office ruler.

The combination of F and x generates what is called a 
“Bending Moment”. Bending moments are so important to 
engineers that they are given the letter M. Next let us think 
about how we can quantify the variation of M with distance 
x. The variation of M with a single applied force, F, is given 
by the equation:
   M = F.x (L – x)/L so that         (1)
   M/F = x (L – x)/L          (2)

Equations (1) and (2) are vertical axis quadratics. 

 Keeping F and L fixed, the bending moment will vary 
only with x and has a magnitude (L – x)/L. Time now for 
some mental arithmetic! Assume that the fixed length L is 
100. Pressing down with x equal to 1 unit x(L – x)/L becomes 
1(100 – 1)/100 or 99/100 which equals 0.99. Now, for example, 
if x equals 10, x (L – x)/L becomes 10(100 -10)/100 which 
equals 900/100 or 9. The bending moment has therefore been 
increased by a factor of just over 9. At halfway along the ruler 
x equals 50 so that x (L – x)/L becomes 50(100 – 50)/100 or 
2500/100 which equals 25.
 We can show how the bending moment, M, varies 
continuously when applying a single fixed force F, at different 
distances, x, by plotting a graph. Assume that F is unity and L 
is 100 so that equation (2) becomes:

                                Mx = x(100 – x)/100        (3)
 
 Use ‘Easyplot’ (supplied to everyone by University), to 
graph equation (3). Set the x-axis to go from 0 to 100 and the 
y-axis to go from 0 to 30 - we already know that the maximum 
value for M will be 25. You should then all get the same graph 
(fig.6):

 
Fig.6. Variation of Maximum Bending Moment 

for a single applied force.

 The total of the bending moments being suffered by the 
strip is the same as that of the green rectangle included in 
fig.6. 
 So far we have only considered how bending moment 
varies for a single applied force, F. What happens if tiny forces 
are applied continuously and uniformly along the beam? We 
have what engineers call “uniformly distributed loading”. For 
example, consider 1N per mm applied uniformly along a 
beam that is 100 mm long. The total loading will therefore be 
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100N but what is the magnitude of the bending moment? To 
tackle this problem we can use a standard textbook equation 
used by mechanical engineers.  The origin of the equation is 
illustrated in fig.7. q is the “uniform loading” equivalent to 
force per unit length.

 

Fig.7. Forces and Bending Moments in a 
uniformly-loaded beam.

 Consider what is happening at the section of the strip that 
is at a distance x from A. The upward force at A (in Newtons) 
is q.L/2 generating a clockwise bending moment of q.x.L/2. 
Between A and the section at x we have a total downward 
force of q.x. This force acts as if it was at a distance x/2 from 
the section at x. Hence it generates an anti-clockwise bending 
moment of q.x2/2. The net bending moment at the section x 
is therefore:
   Mx = q.x.L/2 - q.x2/2 or

   Mx = q.x (L – x)/2         (4)
 
 Using 76 mm (the length of an Almen strip) for L and 
unity for q gives:
   Mx = x (76 – x)/2          (5)
 
 Plotting equation (5) yields Fig.8. Again we have a 
parabolic shape.
 
 We could explore uses for the distribution shown in fig.8. 
However, tutorial time is up—let’s go for a beer.”

BENDING MOMENT DIAGrAM 
APPlICATIONS
Applications relating to peened Almen strips depend mainly 
on the relationships that exist between bending moment, 
deflection and curvature. The fundamental relationship is 
given by:
             M = E.I.1/R          (6)

where M is bending moment, I is the rigidity factor and 1/R 
is the curvature. The rigidity factor for a rectangular beam is 

width times thickness cubed divided by 12. The curvature 
of a strip is therefore related to its arc height, h, by:

               1/R = 8h/L2         (7)

 Combining equations (6) and (7), together with the 
rigidity factor, gives:
    
                                        M = E.I.8h/L2        (8)

 One important inference from equation (8) is that:

Arc height is directly proportional to the 
induced bending moment

 There are several ways in which we can utilize bending 
moment diagrams of peened Almen strips. Just three of these 
ways are detailed as follows:

(1) Almen Gage Measurement Sensitivity
The observed parabolic shape of peened Almen strips has 
an important effect of gage measurement sensitivity. We 
know intuitively that it is best for the measuring tip of an 
Almen gage to be on the center line of the strip. This point is 
illustrated by Fig.9 for which the peened strip is assumed to 
have a center line deflection of 722 µm. We can quantify the 
effect of a small deviation from the center line by substituting 
into the corresponding parabolic equation h = (76x – x2)/2. 
For example, for x = 36 mm, 38 mm (centerline value) and 40 
mm we get h values of 720, 722 and 720 µm respectively. This 
shows that a deviation of as much as 2 mm from the center 
line would only result in an error of 2 µm. Modern Almen 
gages physically restrict such offsetting to a tiny fraction of a 
millimeter.

Fig.8. Bending moment distribution for a 
uniformly loaded Almen strip.
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Fig.9. Effect of major point displacement 
on arc height indication.

(2) Relative Contribution
We see from fig.8 that the bending moment is highest at the 
center of the strip and disappears at the ends of the strip. 
The relative contribution to bending of any given portion 
of the strip is its corresponding area under the curve. One 
such contribution has been included in fig.8 representing a 
portion 8 mm wide straddling the center of the strip. The area 
in blue is some 8 mm x 720 = 5760 (in arbitrary units). Four 
millimeter-wide portions at the ends of the strip would each 
contribute (as “half base times perpendicular height”) some 2 
mm x 135 = 270 giving a total of 540. This is less than a tenth 
of the contribution by the same width of central portion. 
These areas can, however, be determined more precisely by 
using integral calculus.
 Every equation has a corresponding derivative that 
mathematicians describe as its “integral”. These are readily 
obtained nowadays by using web sites. Decades ago integral 
equations had to be derived using established precepts such 
as that the integral of y = x is y* = x2/2 and that the integral of 
y = x2 is y* = x3/3. Just those two precepts are all that we need 
to derive the integral of our Almen strip bending moment 
equation:

y (or Mx) = x (76 – x)/2 so that its integral equation is

                       y* (or M*x) = (76x2/2 – x3/3)/2                       (9) 
 
 Equation (9) is what we need to be able to calculate 
relative contributions to the bending of a peened Almen 
strip. 
 Every integral equation can be used to derive the area 
under a selected portion of the curve. The method is to 

substitute the smaller value of x, a, into its equation and 
subtract it from the value obtained by substituting the 
larger value of x, b. These larger and smaller values of x are 
commonly called “limiting values”. For those unfamiliar with 
calculus consider the following example:
 “What is the area under a curve of y = x between limits 
of 1 and 2?” The integral of y = x is y* = x2/2. The smaller 
limiting value for x is 1 which, on substitution, gives us ½. 
The larger limiting value of x is 2 which, on substitution, gives 
us 2. Subtracting ½ from 2 gives us 1½ which is the correct 
area. The general equation for solving areas under y = x can 
be expressed as:

   Area = b2/2 – a2/2

 Consider next the area of the blue region shown in fig.8. 
The “limiting values” are 34 for a and 42 for b. The equation 
for the integral is more complicated than that for the straight 
line of the previous example. 

   Area = (76x2/2 – x3/3)/2

 Substituting the limiting values of 42 and 34 for b and 
a into (76x2/2 – x3/3)/2 gives us that the required area = 
(76x422/2 – 423/3)/2 – (76x342/2 – 343/3)/2. This (with the 
aid of a calculator) gives us 5,755. This just happens to be very 
close to the previous manual estimate of 5,760. In order to 
determine the relative contribution of this strip portion we 
need a value for the total area under the bending moment 
curve. This is obtained using 76 mm and 0 mm for the larger 
and smaller limiting values of x. Hence:

Total bending moment = 
(76x762/2 – 763/3)/2 – (76x02/2 – 03/3)/2 = 36,580

 The relative contribution of the 8 mm-wide central 
portion is therefore 5,755/36,580 = 0.157 or 15.7% of the 
total. We can compare this contribution with that for two, 4 
mm-wide, end portions of our peened Almen strip. Using b = 
4 and a = 0, we get that the corresponding area under the fig.8 
curve is 293 which is the same as when using b = 76 and a = 
72. Hence the combined contribution of the two 4 mm-wide 
end portions is 586. This is only a tenth of the contribution 
to deflection being made by the central 8 mm wide portion 
thereby agreeing with the previous manual estimate. As an 
important practical point we can conclude that:

The contribution to bending made by the central region is 
far greater than that for equal-area end portions 

of a peened strip.

 This point has previously been established by a study, 
under the auspices of Electronics Inc., for which the end 
portions of Almen strips were masked. This masking was 
found to have only a very small effect on measured deflection 
when compared with that for unmasked strips. 
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(3) Shot Stream Intensity Variability

The intensity within every shot stream varies within itself.

Declared peening intensity values are an average of shot 
stream inherent variability. The origin of this inherent 
intensity variability is schematically illustrated by fig.10. 

 

 
Fig.10. Inherent variability of shot stream velocity.

 The maximum shot velocity occurs at the center of 
the impact area where the impelling air velocity is highest. 
Minimum shot velocity occurs at the edges, A and B, of 
the impact area where the carrying air velocity is lowest. 
The higher a shot particle’s velocity the higher will be its 
contribution to bending moment. It follows that in order 
to induce a reasonably uniform peening intensity on actual 
components there must be substantial overlapping of 
passes. This effect is very similar to that of trying to achieve 
reasonably uniform coverage (see “Coverage Variability”, The 
Shot Peener, Winter, 2017). 
  The effect of shot stream intensity variability on deflection 
can be studied using a combination of integral equations.  One 
such study is illustrated in fig.11 where it has been assumed 
that the peening intensity varies by a factor of two (from 10 to 
20 units) for a shot stream held constant over a narrow strip. 
The shape of the bending moment contribution curve is no 
longer a simple parabola but is now a quartic. With a quartic 
shape the contributions of end portions become even smaller.

Fig.11. Predicted effect of shot stream intensity variability.

DISCuSSION
This article, being essentially “educational”, has sought to show 
how mathematical techniques can be employed to underpin 
our understanding of shot peening. Peened Almen strips, 
being readily available, are particularly useful and their curved 
shapes can easily be determined. Only longitudinal curvature 
has been analyzed but the same principles can be applied 
to crosswise curvature. A very simple (to mathematicians) 
use of calculus has been included that demonstrates the 
quantification of curvature contributions. Analysis has 
been restricted to a limited number of situations largely 
because of space restrictions for a single article. The relative 
contributions of residual stress and plastic deformation to 
measured arc height and studies of the variation of curvature 
contribution along the length of a peened Almen strip are 
examples of omissions.
 The author showed in 1984 (ICSP2, Kirk D, “Behavior 
of Peen-formed Steel Strip on Isochronal Annealing”) that 
the two contributions to strip deflection (plastic deformation 
and residual stress) were roughly equal, giving a ratio of 1:1. 
This early study involved just one coverage condition. It is 
disappointing that no institution appears to have carried out 
more substantial investigations. Theoretical considerations 
would indicate that the ratio will increase with increase in 
the amount of coverage. It is probable that the residual stress 
contribution to curvature peaks at about a nominal 100% 
coverage and that further bending is due to continued plastic 
deformation. There is a growing weight of argument that 
the maximum benefit of shot peening occurs at or below a 
nominal 100% coverage. A study involving the peening of 
sets of strips at a range of coverages followed by isochronal 
annealing would confirm (or otherwise) the theoretical 
prediction and add weight to the argument about optimum 
coverage. l
 


