
Relationship between shot stream diameter and time of 
exposure
Consider first an analogy of a train of length L traversing 
at a constant rate between two markers, A and B, that are 
L apart as illustrated schematically in fig.1. If the markers 
were 40 meters apart and the train was travelling at, say, 
40 meters per second then it would take one second to 
pass both markers. If, however, the train was twice as long, 
2L, then it would take two seconds to pass both markers. 
It follows that the time to pass both markers is directly 
proportional to the length of the train.

 
Fig.1. Representation of a train having to travel 

between markers. 

  Consider next a circular-section shot stream traversing 
along an Almen strip. The time of exposure of the strip 
must be directly proportional to the diameter of the stream’s 
cross-section. Stream diameter variability is analogous to 
variability of train length.
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InTroDUCTIon
Many years ago Jack Champaigne asked me if I could write a 
computer program that would determine peening intensity 
quantitatively. This was to be an alternative to the subjective 
manual methods then being normally employed. No contract 
or payment was to be involved. The exercise was to be a 
purely academic one. Having recently retired from full-time 
employment at Coventry University, I had some time on my 
hands and so decided to take up the challenge. After all my 
experience with computer programs for X-ray residual stress 
analysis I thought that it shouldn’t involve much effort—big 
mistake!
  There are two essential elements that need to be considered:
 (1) Data points and
 (2) An appropriate curve-fitting equation.

  Every measured data point throughout the Universe 
involves some variability, however small. Data values are 
affected by relevant variables. The effect of each variable 
can normally be expressed by an appropriate equation. This 
article is concerned with the way in which peening intensity 
can be derived by finding and using the parameters of an 
equation fitted to a set of data points. 
  
DATA PoInTS
Peening intensity data points involve two variables:
 (1)  Measured deflection from flatness of an Almen strip 

and
 (2) The time of exposure to a shot stream.

  Because only two variables are involved, we can easily plot 
peening intensity data points graphically as deflection against 
time—giving us the so-called ‘Saturation Curve’. Normally 
between 4 and 6 data points are produced. One problem to 
consider, however, is whether or not both deflection and 
peening time suffer variability. I knew that deflection for any 
given exposure to a shot stream suffers variability but what 
about the corresponding peening time? This question gave 
me some food for thought. What might cause a variation in 
the time of exposure to a given shot stream? One reason is 
variability in the diameter of the shot stream itself as it strikes 
the Almen strip. The following is an explanation of this effect. 

 I am not aware of any published quantitative evidence of 
stream diameter variability. Some variability must, however, 
occur although it is probably less than that of deflection 
variability. 

CUrvE-FITTInG BY ‘lEAST-SQUArES’
My approach was to apply the ‘least-squares’ technique that I 
was quite familiar with and which is built into the universally 
available Microsoft Excel program. This technique minimizes 
the squares of the differences between the data point values 
and the selected model equation. The following is an 
explanation of this effect. 
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PoSSIBlE CHoICE oF ‘APProPrIATE’ 
EQUATIon For CUrvE FITTInG
Published examples of peening intensity curves indicated 
that their shape was roughly exponential. Indeed, some 
authors believed that arc heights reached a maximum value 
after extended peening. No scientific explanation for that 
possibility had, however, been proposed. I, personally, had 
never produced a data set that approached a maximum value. 
  My approach to selecting an appropriate equation 
was colored by having developed and used a continuous 
monitoring technique that was detailed in Proceedings 
of ICSP5. With this technique, Almen strip deflection is 
measured continuously during shot peening, obviating the 
need for curve fitting. A continuously monitored curve is 
illustrated by fig.3.
 The shape of the curve indicated in fig.3 does not 
correspond to a simple mathematical equation. Almen 
arc height increases with peening time but with the rate of 
increase reducing with increasing peening time. Every curve 

that I had produced showed a continued increase of arc height 
with increase in amount of peening. This did not surprise me 
because shot peening is essentially a metalworking process 
for which any increase in the work done increases the 
amount of deformation and hence curvature. Another feature 
that I noticed was that there is always a ‘point of maximum 
curvature’ suggested here as being at P in fig.3. 
  A standard method is to select a set of data points and 
then use a curve-fitting program to find the equation of a 
curve that best fits those points. Having applied this method 
many times previously I used it to select exponential equations 
that could be appropriate. 

Two-parameter Exponential Equation
The simplest relevant exponential equation has just two 
parameters, a and b, and is given as:

                 h = a*( 1 – EXP(-b*t))         (1)

where h is the Almen arc height and t is the peening time.

 This type of equation is asymptotic to a limiting  h value.

Three-parameter Exponential Equation
Three parameters, a, b and c, are involved and the equation 
is given by:
                  h = a*(1 – EXP(-b*tc))         (2) 
This type of equation is also asymptotic to a limiting h value.

Four-parameter Exponential Equation
This type of equation adds a linear component, d*t, to the 
three-parameter equation to become:

            h = a*(1 – EXP(-b*tc)) + d*t                        (3)

MECHAnICS oF FITTInG EQUATIonS
Microsoft’s Excel program is, as mentioned previously, 
universally available and was therefore chosen for this project. 
Fig.4 illustrates the mechanics of how a selected equation, 
EXP2P, is fitted to a data set without using macros. The data 

Least-squares Curve-fitting
‘Least-squares’ means minimizing the sum of the squares 
of differences between data point values and the value lying 
on an assumed curve equation. This concept is illustrated 
in fig.2.
  For simplicity of mental arithmetic, arbitrary units are 
used in fig.2. For point 1, the difference between the data 
point and the curve point is 1. 1 squared is also 1. For point 
2 the square of the difference is also 1. For points 3 and 4 
the difference between the data point and the curve point 
is 0.5 whose square is 0.25. The sum of the squares for the 
four points is therefore 2.5 (1 + 1 + 0.25 + 0.25). Consider 
next the dashed curve. For point 1 the difference between 
the data point and the curve point is 3 which squared is 9 
—much larger on its own than the 2.5 for the much better-
fitting continuous curve. The dashed curve is obviously not 
a good fit! Both of the curves shown in fig.2 have simple 
two-parameter exponential equations as in the EXP2P 
Solver programs.

 

Fig.2. ‘Least-squares’ curve-fitting applied to 
shot peening data points.

Fig.3.Continuous curve of arc height versus peening time.
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set comprises nine measured values which is far more then 
shot peeners would normally acquire. This set does, however, 
reveal some subtle features of the program. 

Data Input Stage
This stage is straightforward as the values for the data set have 
to be entered within the blue frame. The next column uses a 
basic facility of Excel insofar as it allows values in one column 
to be automatically subtracted from corresponding values in 
another column to give ‘Corrected Height’ values. 

Curve Solving Stage
Excel has a Solver function that I used to determine the least-
squares best fit and from that the required peening intensity 
point. The word ‘Solver’ therefore appeared to be appropriate 
for titling purposes. 
  For these programs. Solver has to be given reasonable 
starting values for a and b. It then uses those initial values 
for a and b to calculate the Y values that lie exactly on the 
equation’s curve. It then subtracts each calculated Y value 
from the corresponding data point’s arc height to give what 
is called a ‘Residual’ difference. If, for example, the initial 

values for a and b gave a Y value of 3.6 for the first data point 
then the corresponding residual value would be -0.4 (3.6 – 
4). Each of the residual values is then squared and added up 
to give a SUM (as in fig.4). This sum has to be minimised to 
give a least squares value. Solver uses iteration to find the 
minimum value of the SUM. ‘An iterative process is a process 
for calculating a desired result by means of a repeated cycle of 
operations. An iterative process should be convergent, i.e., 
it should come closer to the desired result as the number of 
iterations increases’. During iteration the values for a and b 
are repeatedly adjusted by tiny amounts causing the SUM 
to get smaller and smaller. When no further reduction is 
achieved the cycle stops to give values such as the 8.65 and 
0.53 given in fig.4. The equation for the curve is now solved—
in less than the blink of an eye!

Peening Intensity Point
Having now found the parameters a and b of the equation, the 
next step was to find the point on the curve that satisfied the 
requirement that ‘When the peening time is doubled the arc 
height increases by 10%’. Excel’s Solver could be employed to 

Fig.4. Excel Worksheet using EXP2P program.
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find this point using ‘Goal Seek’. However I found a simpler 
method. Expressing the 10% requirement mathematically 
gives the following:
                   Y = a(1 – EXP(-b*T))         (4)
                       1.1Y = a(1 – EXP(-b*2T))          (5)
Dividing equation (5) by equation (4) eliminates both Y and a:
            1.1 = (1 – EXP(-b*2T)) /(1 – EXP(-b*T))        (6)
Equation (6) simplifies to give that the required value for 
T is given by T = 1.897/b. This required value calculation 
was incorporated into the spreadsheet, e.g., 3.61 in fig.4. 
The calculated required value for T is then substituted into 
the now-established equation to give the required peening 
intensity value, e.g., 7.35 in fig.4.

Goodness of Fit
Having found the parameters of the best fit of the selected 
equation, it is useful to be able to quantify how good the fit is. 
The SUM shown in fig.4 has the smallest value obtained using 
the least-squares method. This sum is, however, proportional 
to the number of data points. The greater the number of 
data points in a given set the larger will be the SUM. A term 
‘Root Mean Square’ is generally used to quantify goodness 
of fit and eliminates the effect of data point number. This 
is achieved by taking the mean of the squared residuals (by 
dividing the SUM by the number of data points) and taking 
the root of the mean. This result is calculated automatically 
in the spreadsheet and displayed as RMS-R having a value of 
0.2831 for the example shown as fig.4. The smaller the value 
of RMS-R the better is the fit.
  Root mean square values are useful for quantifying the 
magnitude of random errors. They do not, however, reveal 
systematic errors. As a parallel, consider tossing a coin 40 
times and finding that ‘heads’ appeared 20 times and ‘tails’ 
also 20 times. We might reasonably conclude that the coin 
was unbiased. But what if ‘heads’ appeared for each of the first 
20 tosses and ‘tails’ appeared for each of the second 20 tosses?  
That would indicate a high probability of a systematic error. 
A systematic error is also possible for the ‘residuals’ of the 
example shown in fig.4. I built in an indicator for systematic 
error by highlighting negative residuals pink. Using the 
coin-tossing parallel we have two ‘tails’ followed by 4 ‘heads’ 
and then by three ‘tails’. This sequence is exceptional, hence 
indicating a possible systematic error. 

DISPLAY OF FINDINGS
Throughout this exercise I decided to display all of the 
findings. This was so that users could discover how the 
findings had been determined. Many users are only interested 
in the results. A graphical type of display was therefore 
introduced that highlights the most important findings. Fig.5 
is the graphical display that corresponds to the findings of 
fig.4. This display utilizes more of Excel’s excellent features. 

 
Fig.5. Graphical display using findings presented in fig.4.

  The arc height for Saturation Intensity, aka Peening 
Intensity, is headlined together with its peening time, T, 
and 2T. Corrected Gage Data Points can be compared with 
the Fitted Curve and Fitted Curve Points. In this case, the 
comparison reveals the possible systematic error considered 
previously for this particular data set. The spreadsheet shown 
in fig.4 also allowed for the specification limits to be entered. 
As it happens they were not specified for this data set. If they 
had been specified then two horizontal red lines would have 
appeared in fig.5. For example, specifying limits of 7 and 10 
would highlight that the derived intensity of 7.35 was very 
close to the lower allowed limit. 

MECHAnICS For oTHEr FITTED 
EQUATIonS
Having succeeded in producing a program using a two- 
exponent exponential equation, the next step was to modify 
the program to accommodate other equations. 

Three-parameter Exponential - EXP 3P
This equation uses h = a*(1 – EXP(-b*tc)) as a fitting equation. 
The only significant modification required was to employ 
Excel’s GOAL SEEK function to calculate the ‘10% time’ 
and thence the arc height for that time. This was achieved by 
asking Goal Seek to minimize the following function:
        f(x) = 1.1 (1 – EXP(-b*T)) - (1 – EXP(-b*2T))     (7)
Goal Seek starts by substituting a value for T into equation 
(7) in order to find a value for f(x). It then makes tiny changes 
to the value of T to see if they reduce the magnitude of f(x). 
Eventually it finds a value for T that minimizes f(x). That 
minimum value is normally the required peening intensity 
point’s time. 
  The only problem with Goal Seek is that there are two 
possible answers! If it started its search with a time close 
to zero it would hone in on T = 0 as being the solution. In 
practice this rarely happens but when it does Goal Seek has to 
be given a value at least as great as the time for the first data 
point in the set.  

Four-parameter Exponential - EXP 4P
This equation uses h = a*(1 – EXP(-b*tc)) + d*t as a fitting 
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equation. The d*t adds a linear component to EXP3P. I felt 
intuitively that this would achieve an excellent fit and so 
it turned out. One restriction, however, was that it could 
only be applied using the least-squares method to data sets 
that comprised at least six points. Also a four-parameter 
exponential equation is mathematically relatively unstable. 
I later found out that the improved fit was not necessary 
with respect to locating the peening intensity point. For that 
reason (discussed later), I did not include it in the Solver Suite 
of programs. 

French Specification - 2PF
The French specification for computer-based analysis requires 
users to use a particular fitting equation. This is termed a 
‘rational function’ and has the following equation: 
                        h = a*t/(t + b)          (8)
Equation (8) is exponential to the value of a. The value of the 
peening point time does not need Goal Seek as I found that 
it was equal to 9b/2. This is because we have the following 
relationship:
         1.1*a*T/(b + T) = a*2*T/(b + 2T)
a*T in the numerators cancel each other out leaving:
  2*b + 2*T = 1.1*b + 2.2T which reduces to give:
   0.9*b = 0.2*T or T = 0.9b/0.2

ProGrAM vArIAnTS 
Having succeeded in producing three workable programs, 
EXP2P and EXP3P, I modified them to accommodate the 
then published corrections needed for flapper peening and 
also to allow the findings from one data set to be compared 
with one from a previous data set. This led to a total of 12 
separate programs forming the Solver Suite. I pondered about 
whether or not such a number might be found confusing. 
Eventually I decided that in practice users would normally 
only select one or two from the suite to use regularly. 

ProGrAM CoMPArISonS
The primary objective of the exercise was to estimate the 
peening intensity point rather than finding the best fit. 
Estimates of the derived peening intensity point were therefore 
carried out using all four available programs (EXP2P, EXP3p, 
EXP4P and 2PF) and the same nine-point data set as shown 
in fig.4. This gave the results shown as Table 1. 

Table 1 
Effect of Program on derived Peening Intensity Point

Program Intensity T
EXP2P 7.35 3.61
EXP3P 7.69 4.30
EXP4P 7.16 3.59
2PF 7.79 6.06
Average 7.50 4.49

 The results show clearly that these widely different 
programs all produce very similar derived peening intensity 
values albeit with substantial differences in the corresponding 
times, T. 
  Years after producing the Solver Suite of programs, the 
SAE introduced J2597. This specification gives guidelines on 
computer-derived peening intensity values. Any program was 
allowed provided that it met a stated criterion when applied 
to its set of 10 data sets—the criterion being that all of the 
derived peening intensities should deviate less than ± 0.001" 
from the stated values. Fig.6 illustrates the deviations from 
the stated values for Solver Suite programs based on EXP2P 
and 2PF. Both meet the requirement. 

 
     

Fig.6. Deviations from the J2579 data set for 
EXP2P and 2PF programs. 

DISCUSSIon
A set of programs was successfully produced that allowed 
peening intensity to be derived using features embodied in 
Microsoft’s Excel. It is believed that this free set of programs 
has stimulated the almost universal adoption of computer-
based intensity derivation in place of subjective manual 
techniques. All of the programs are ‘open source’ as I insisted 
that a primary feature was for them to be ‘educational’—
allowing users to know how values are being derived. In 
particular the fitting equation is always declared unlike 
commercial programs.
  As a word of warning, specifications are regularly 
updated which may impinge on some Solver Suite programs. 
For example, AMS2590B for flapper peening was updated 
in January 2019. This specification requires data corrections 
prior to creating a saturation curve. Only some of the 
proposed data corrections are applied automatically by the 
corresponding Suite programs. l


