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Abstract 
When applying the Sin²ψ technique to x-ray diffraction (XRD) based residual stress 
measurements, both the normal and shear stress components can be easily and accurately 
evaluated in the direction(s) of interest. The Sin²ψ technique was developed and refined over 
several decades along with many other advances so as to achieve high accuracy residual 
stress measurement results in a wide variety of circumstances and material conditions. With 
the introduction of the Cosa technique, only the biaxial stress field was considered in the 
calculation of the stress tensor components and as such, is susceptible to significant errors 
often resulting in unreliable residual stress measurements. In the present study, the Sin²ψ and 
Cosa techniques were compared and evaluated. It is shown that the biaxial based Cosa 
technique leads to erroneous stress data when in-plane shear stress is present, and results 
are found to be equivalent to the two-tilt Sin²ψ technique.  In other words, the Cosa technique 
used in only one orientation could not reproduce the correct results as obtained via the Sin²ψ 
technique with multiple tilts.  Thus, the only viable solution is to assume a triaxial stress tensor 
and to collect data with tilts distributed evenly over the half-space when using the Cosa 
technique. 
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Introduction 
The development of residual stress measurements using x-ray diffraction techniques went 
through many steps over time. Initially, the residual stress field was assumed to be biaxial 
because of the stress boundary conditions and the shallow penetration of x-rays. Therefore, all 
stress components in the third direction were assumed to be zero, i.e., si3=0. [1].  At the time, 
stress measurements were only executed using positive inclination angles (y+) while a linear 
regression was sufficient to determine the normal stress in the direction of interest (f=0°). As 
a result, the design of instruments was tailored to accommodate the biaxial stress tensor 
assumption. However, it was known that misalignment of the goniometer resulting in a beam 
shift would cause PSI-Splitting when measuring both the (y+) and (y-) branches [2]. The 
common practice was to flip the component (f=180°) exclusively to verify the misalignment of 
the goniometer.  
The first time PSI-Splitting was recorded on a component, it was reported in a task force 
residual stress meeting [2].  After double verification of the alignment, it was established that 
the shear stress was indeed real, and that it originated from the processing of the component 
itself, not the misalignment of the goniometer. Since then, the scientific community has 
established a new reliable procedure to measure residual stresses in materials using the Sin²y 
technique assuming a triaxial stress tensor. Many advances have been introduced over the 
last several decades which have resulted in the development of thorough and well documented 
residual stress standards and best practice guidelines that enable high accuracy and reliable 
residual stress measurements using XRD [3,4]. 
With the emergence and development of the Cosa technique using a 2D detector, the biaxial 
stress tensor was the prime assumption included in all marketed instruments [5]. However, this 
technique was found to exhibit many limitations and weaknesses in addition to the ones already 



known for all XRD techniques in general. Moreover, it has been shown that the Cosa technique 
suffers from the exact same limitations as the two-tilt Sin²y technique (SET- Sin²y ) [6,7]. The 
Cosa technique cannot reliably measure stresses in materials when anisotropy and in-plane 
shear stresses (t13 or t23) exist because their presence produces a significant effect that can 
easily mislead a measurement practitioner [7]. 
To demonstrate the need to use a triaxial stress tensor in the stress model, a simulation 
comparing the following techniques was developed: 1) the Sin²y technique with multiple tilt 
angles (MET- Sin²y), 2) the Sin²y technique with two tilt angles (SET- Sin²y), and 3) the Cosa 
technique with a single tilt (SET-Cosa). This work emphasizes the limitations of the SET- Sin²y 
and the Cosa techniques along with the effect of different measurement conditions on the 
stress results obtained. 
 
Shear stress induced processes 
The in-plane shear stress is a result of non-uniform processes applied to materials exhibiting 
heterogeneous microstructure including ferrous alloys. These processes are many, among 
them, machining, grinding, roll-peening, friction and directional peening. Other shear stresses 
are fictitious and can be generated from a curved geometry or tilted surface. All of these shear 
stresses will affect the calculation of the normal stress component [2]. 
 
Cos-Alpha techniques 
The Cosα residual stress measurement technique is XRD based and uses the distance 
between crystallographic planes (i.e., the d-spacing) as a strain gauge.  It can only be applied 
to crystalline, polycrystalline, and semi-crystalline materials [1,2]. When the material is in 
tension, the d-spacing increases and when the material is in compression, the d-spacing 
decreases. The d-spacing is calculated from the measured Bragg angle 2θ for a known x-ray 
wavelength λ using Bragg’s law: 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃          (1) 

Subsequently, the strain e is calculated from unstressed (d0) and stressed (dψφ) values for each 
orientation defined by the angles f and ψ. Hence the strain is calculated using the following 
relationship:  
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	 	 	 	 	 	 	 	 	 	 (2)	

 
Figure 1: SET-Cosa technique geometry using full Debye ring. 

 
Cosα technique uses the whole Debye ring collected with a 2D detector, and determines the 
peak position for each angle α around the ring [5]. ψ0 is the inclination of the sample relative to 
the incident beam, f0 is the direction of the measurement, and 2ɳ is the angle subtended by 
the incident and diffracted beams. The tilting angles are therefore defined as: ψ1= ψ0+ ɳ, and 
ψ2= ψ0- ɳ, where ɳ=(π-2θ)/2 (see Figure 1). Strain quantities can be defined as shown in the 
Eq. 3 and 4: 
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where Ɛα, Ɛπ+ α, Ɛ-α, and Ɛπ-α are the measured strains from the four sectors of the Debye ring. 
For f0 =0, the direction of the strain can be reduced to the following expression: 
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Considering Triaxial stress tensor 
Considering a triaxial stress field, new expressions are derived for a1 and a2: 
𝑎! = − (!%*)
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And the stress terms are calculated for the slopes of a1=f(Cosa) and a2=f(Sina) as follows: 
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Since most polycrystalline materials are considered anisotropic, Young’s modulus, E, and 
Poisson’s ratio n, are replaced by ½S2 and S1 using the following expressions [1]: 
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To solve Eq. 8 and 9 for all 4 components (s11, t13) and (t12, t23), a set of 4 equations are 
necessary. This will require at least two measurements, i.e., 2-Debye rings [10]. For better 
statistical sampling, more tilts are recommended. 
 
Considering the Biaxial stress tensor 
For the biaxial stress tensor, the second terms in Eq. 8 and 9 are dropped therefore the new 
equations are: 
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The components s11 and t12, in this case, can be calculated from a single Debye ring data. 
Cosa instruments that use by default only one Debye ring assume a biaxial stress tensor and 
therefore, cannot calculate the shear components (t13, t23). 
 
Sin²ψ Technique – Multiple Exposure Technique (MET-Sin²ψ) 
The constitutive equations for the Sin2ψ technique are as follows [1]: 
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The normal stress in the direction of interest, φ, can be defined as: 
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All stress components can be calculated from a triaxial measurement with multiple (φ,ψ) 
directions or (s11, t13) from a single measurement with multiple tilts. The normal and shear 
stresses are independent and can be calculated using either a linear or elliptical fit. It is 
recommended that when using this technique, both positive and negative ψ-angles ranging 



from +45º to -45º are covered, and that at least 9 tilts distributed approximately equally be 
sampled [4].  
Two-tilt method Sin²ψ (SET-Sin²ψ)  
The SET-Sin2ψ technique in this case uses a single goniometer tilt with two detectors, which is 
equivalent to using 2 goniometer tilts with one detector (i.e. both scenarios sample two different 
ψ angles). In general, a single tilt is used with two detectors where the angles are defined as: 
ψ1 and ψ2 defined in SET-Cosa paragraph [1]. These angles correspond to α =0° and α =180° 
on the Debye ring (see Figure 1). For the SET-Sin2ψ, Eq. 13 can be reduced to the following 
equation with s22=s33=t13=0 and f=0º: 
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Given these assumptions, when using the SET-Sin2ψ, only one normal stress component (σφ) 
can be determined.  
 
Residual stress simulation 
In order to demonstrate the limitations of both the SET-Cosα technique and the SET-Sin2ψ 
technique, a theoretical approach was opted for using simulation since it is advantageous for 
studying a variety of parameters. The simulation method was described in [7] and it consists of 
calculating the stress values from a known initial input stress tensor σij then the strains eφψa in 
every direction for all 3 techniques: SET-Cosα, SET-Sin2ψ and MET-Sin2ψ.  This simulation 
illustrates the effect of the inclination angle ψ0 on the normal stress, the stress error due to the 
presence of shear stress, stress evolution under load, and the residual stress value offset due 
to the presence of shear stress. 
 
Parameters influencing the SET-Cosa technique 
Tilting angle: 
As illustrated in Eq. 8 and 9, the stress value is directly dependent on the values of the tilt angle 
ψ0 and the magnitude of shear stress present. The normal stress (σ11) is directly affected by 
the magnitude of the t13, and t23 shear stress components as illustrated in Figure 2.  These 
residual stresses were simulated for both the positive and the negative ψ-tilts and for two 
different magnitudes of shear stress as shown in the stress tensors below: 

	σij(MPa)=!
500 100 100
100 500 100
100 100 0

"	and  σij(MPa)=!
500 100 50
100 500 50
50 50 0

"		

				 	
Figure 2: Simulated stress tensor terms σ11 and t12 versus ψ0, for both  ψ0<0 and ψ0>0 values 

using: SET-Cosα,SET-Sin2ψ, and MET-Sin2ψ, for 2 different stress tensor inputs. 
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These simulation results indicate that the presence of the shear stresses t13 and/or t23 are 
expected to offset both the σ11 and t12 stress components that the SET-Cosα technique 
produces. This effect has been confirmed experimentally [6,9]. The offset for σ11 varies with 
both the direction and the magnitude of ψ-tilt angle. It is only at ψ0=45° where the shear stress 
effect is eliminated. The magnitude of residual stresses can be either overestimated or 
underestimated, depending on the orientation of the part and the sign of the shear stress 
component. Both components σ11 and t12 converge to their true values of 500 MPa and 100 
MPa when the ψ-tilt angles are ±45° and ±90° respectively. The influence of t23 on t12 is most 
significant when the stress levels are on the same order of magnitude. The effect of the tensor 
terms t13 and t23 on σ11 and t12 respectively are independent, however, the presence of t23 will 
affect σ22 when measured in the f0=90°direction.  

 

Shear stress levels: 
The absolute errors on the normal 
stress σ11 and the shear stress t12 are 
proportional to the magnitude of the 
shear stress only (not the magnitude 
of the normal stress), and the relative 
error is inversely proportional to the 
normal residual stress magnitude. 
Therefore, the relative stress error is 
inversely proportional to the 
magnitude of the shear stress (see 
Figure 3). 
High shear stress magnitudes can 
easily be generated in ground and 
machined materials or components 
while still having relatively low 
magnitude normal stress values. The 
stress errors in such cases can be 
significant and cannot be discounted. 
Moreover, the shear stress t12 is highly 
altered by the presence of the shear stress t23 and as such, can have huge implications when 
considering principal stress calculations. 
Presence of Anisotropy 
All residual stress measurement 
techniques (including XRD) are sensitive to 
the microstructure present in the material 
including grain size and preferred 
orientation.  As such, accurate residual 
stress measurements must be able to 
account for, and consider, the effect of the 
material microstructure. Sin2ψ, state-of-
the-art goniometers and software are 
generally equipped with tools to mitigate 
and/or eliminate these effects. However, 
the SET-Cosα technique does not enjoy these advantages and it is often either very difficult or 
impossible to equate SET-Cosα to MET-Sin2ψ results when grain size and preferred orientation 
effects are present. Depending on the severity of these factors, SET-Cosα stress results can 
be completely erroneous. These effects are illustrated in the example shown in Figure 4. When 
comparing these two techniques side by side, the MET-Sin2ψ technique has been shown to 
produce reasonably accurate results, whereas the SET-Cosα technique fails completely [7,11]. 
 

	
Figure 3: Simulated normal stress errors caused by 

the presence of the t13 and t23 shear stress 
components at different levels [8]. 
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Figure 4: 3D Debye rings data for Stellite 
sample (coarse grain size) and stainless-steel 
sample (preferred orientation) [7]. 
	



Discussion and Conclusions 
Many advances in residual stress measurements obtained using the Sin2ψ technique have 
been made over recent decades.  These have helped ensure that accurate stress results are 
obtained on a variety of materials processed under a wide spectrum of conditions. Many 
aspects of XRD based residual stress measurements have been fully developed and refined 
including: stress gradients, grain size effects, texture effects, shear stresses, triaxial stresses, 
two-phase materials, stress in single crystals, and many others. The amount of knowledge 
acquired over these decades is significant and has helped the scientific community vastly 
improve the accuracy of their residual stress measurements.  All these advances were 
achieved using the Sin2ψ technique assuming a triaxial stress tensor. 
The SET-Cosa technique however, even today, suffers from the same difficulties the scientific 
community had experienced decades ago. The SET-Cosa technique theory reported in this 
paper clearly shows why it is essentially antiquated and relegated to the knowledge level of 
stress measurements performed in the 1970s, when the effects of shear stress were unknown. 
Results obtained using the SET-Cosa technique are extremely sensitive to the tilt angle 
selected when shear stress are present in the material as shown in Figure 2 [7]. Assuming the 
presence of a biaxial stress state is a huge and unnecessary risk that can lead to erroneous 
results, especially on materials with large grain size or texture as compared to Sin2ψ technique 
[11,12]. The errors associated with SET-Cosa technique can be especially significant when the 
ratio between the shear stress and the normal stress is high. The solution for Cosa is to use 
the same assumptions used for the MET-Sin2ψ technique, i.e., triaxial stress tensor with an 
adequate number of tilts to cover the full half-space and adequately solve for all of the unknown 
stress tensor components, and sufficient sampling statistics of d-spacing from the maximum 
number of grains possible. As this paper has clearly demonstrated, the practitioner cannot 
assume a priori that the stress field in the material is biaxial before the measurement is 
performed. Only by assuming a triaxial stress tensor will XRD based residual stress 
measurements be reliable and accurate using any technique. 
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