Overview of Low Plasticity Burnishing for Mitigation of Fatigue Damage Mechanisms

Author:  Prevey, Jayaraman, Cammett
Source:  Conf Proc: ICSP-9 (pg 267-272)
Doc ID:  2005096
Year of Publication:  2005
Abstract:  
ABSTRACT Surface enhancement technologies such as shot peening (SP), laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. LPB provides thermally stable compression and can be performed in conventional machine shop environments on CNC machine tools. LPB enables the extension of component service lives fatigue limited by various damage mechanisms including foreign object damage (FOD), corrosion fatigue, pitting, and fretting. The thermal and mechanical stability of the compressive layer are briefly reviewed. The LPB process, tooling, and control system are briefly described. Four representative applications are presented: thermal stability in IN718, improved damage tolerance in Ti-6-4 fan blades, mitigation of fretting fatigue damage in Ti-6-4, and improved corrosion fatigue in 17-4PH stainless steel.


Download PDF